Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-35742654

RESUMO

In the last two years, the world has been overwhelmed by SARS-CoV-2. One of the most important ways to prevent the spread of the virus is the control of indoor conditions: from surface hygiene to ventilation. Regarding the indoor environments, monitoring the presence of the virus in the indoor air seems to be promising, since there is strong evidence that airborne transmission through infected droplets and aerosols is its dominant transmission route. So far, few studies report the successful detection of SARS-CoV-2 in the air; moreover, the lack of a standard guideline for air monitoring reduces the uniformity of the results and their usefulness in the management of the risk of virus transmission. In this work, starting from a critical analysis of the existing standards and guidelines for indoor air quality, we define a strategy to set-up indoor air sampling plans for the detection of SARS-CoV-2. The strategy is then tested through a case study conducted in two kindergartens in the metropolitan city of Milan, in Italy, involving a total of 290 children and 47 teachers from 19 classrooms. The results proved its completeness, effectiveness, and suitability as a key tool in the airborne SARS-CoV-2 infection risk management process. Future research directions are then identified and discussed.


Assuntos
Poluição do Ar em Ambientes Fechados , COVID-19 , Aerossóis , Poluição do Ar em Ambientes Fechados/prevenção & controle , COVID-19/diagnóstico , Criança , Humanos , SARS-CoV-2 , Ventilação
2.
Sensors (Basel) ; 21(3)2021 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-33498904

RESUMO

Wearable devices are pervasive solutions for increasing work efficiency, improving workers' well-being, and creating interactions between users and the environment anytime and anywhere. Although several studies on their use in various fields have been performed, there are no systematic reviews on their utilisation in ergonomics. Therefore, we conducted a systematic review to identify wearable devices proposed in the scientific literature for ergonomic purposes and analyse how they can support the improvement of ergonomic conditions. Twenty-eight papers were retrieved and analysed thanks to eleven comparison dimensions related to ergonomic factors, purposes, and criteria, populations, application and validation. The majority of the available devices are sensor systems composed of different types and numbers of sensors located in diverse body parts. These solutions also represent the technology most frequently employed for monitoring and reducing the risk of awkward postures. In addition, smartwatches, body-mounted smartphones, insole pressure systems, and vibrotactile feedback interfaces have been developed for evaluating and/or controlling physical loads or postures. The main results and the defined framework of analysis provide an overview of the state of the art of smart wearables in ergonomics, support the selection of the most suitable ones in industrial and non-industrial settings, and suggest future research directions.


Assuntos
Ergonomia , Dispositivos Eletrônicos Vestíveis , Humanos , Postura , Smartphone , Tecnologia
3.
Int J Occup Saf Ergon ; 27(4): 990-1004, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31530255

RESUMO

Objective. In the steel industry, performing activities in confined spaces where potential oxygen displacement can occur may expose workers to fatal consequences. To the best of our knowledge, no quantitative exposure assessment of oxygen deficiency in steel industry confined spaces is available in the literature. To overcome this gap, we performed oxygen deficiency hazard (ODH) assessments in real confined spaces using two existing models to identify the most critical parameters responsible for ODH, and suggest controls for mitigating the asphyxiation risk. Methods. We applied a well-mixed model and a near field-far field approach to estimate the indoor oxygen level with time during and following release of simple asphyxiants. Model inputs were mainly gathered thanks to audits and instrumental tests in three firms. Results. The most severe ODH exposures are posed in spaces with restricted volume and where accidental releases of inert gases can occur. Such exposures can be controlled through early release detections and augmented reality systems. Conclusions. ODH assessments in confined spaces of steel firms allow the identification of the most critical parameters from an oxygen depletion perspective, focusing on which data need careful measurement, and help to establish controls compatible with the operations conducted in these areas.


Assuntos
Exposição Ocupacional , Soldagem , Espaços Confinados , Humanos , Hipóxia , Indústrias , Exposição Ocupacional/análise , Exposição Ocupacional/estatística & dados numéricos , Aço
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA