Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Cancer ; 4(9): 1258-1272, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37537301

RESUMO

The accepted paradigm for both cellular and anti-tumor immunity relies upon tumor cell killing by CD8+ T cells recognizing cognate antigens presented in the context of target cell major histocompatibility complex (MHC) class I (MHC-I) molecules. Likewise, a classically described mechanism of tumor immune escape is tumor MHC-I downregulation. Here, we report that CD8+ T cells maintain the capacity to kill tumor cells that are entirely devoid of MHC-I expression. This capacity proves to be dependent instead on interactions between T cell natural killer group 2D (NKG2D) and tumor NKG2D ligands (NKG2DLs), the latter of which are highly expressed on MHC-loss variants. Necessarily, tumor cell killing in these instances is antigen independent, although prior T cell antigen-specific activation is required and can be furnished by myeloid cells or even neighboring MHC-replete tumor cells. In this manner, adaptive priming can beget innate killing. These mechanisms are active in vivo in mice as well as in vitro in human tumor systems and are obviated by NKG2D knockout or blockade. These studies challenge the long-advanced notion that downregulation of MHC-I is a viable means of tumor immune escape and instead identify the NKG2D-NKG2DL axis as a therapeutic target for enhancing T cell-dependent anti-tumor immunity against MHC-loss variants.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Animais , Humanos , Camundongos , Antígenos/metabolismo , Linfócitos T CD8-Positivos/patologia , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Neoplasias/genética , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo
2.
Nat Commun ; 13(1): 6483, 2022 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-36309495

RESUMO

Glioblastoma (GBM) is notorious for its immunosuppressive tumor microenvironment (TME) and is refractory to immune checkpoint blockade (ICB). Here, we identify calmodulin-dependent kinase kinase 2 (CaMKK2) as a driver of ICB resistance. CaMKK2 is highly expressed in pro-tumor cells and is associated with worsened survival in patients with GBM. Host CaMKK2, specifically, reduces survival and promotes ICB resistance. Multimodal profiling of the TME reveals that CaMKK2 is associated with several ICB resistance-associated immune phenotypes. CaMKK2 promotes exhaustion in CD8+ T cells and reduces the expansion of effector CD4+ T cells, additionally limiting their tumor penetrance. CaMKK2 also maintains myeloid cells in a disease-associated microglia-like phenotype. Lastly, neuronal CaMKK2 is required for maintaining the ICB resistance-associated myeloid phenotype, is deleterious to survival, and promotes ICB resistance. Our findings reveal CaMKK2 as a contributor to ICB resistance and identify neurons as a driver of immunotherapeutic resistance in GBM.


Assuntos
Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Linfócitos T CD8-Positivos , Microambiente Tumoral , Terapia de Imunossupressão , Neurônios/patologia , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/genética
3.
Front Oncol ; 11: 696402, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34222022

RESUMO

We have only recently begun to understand how cancer metabolism affects antitumor responses and immunotherapy outcomes. Certain immunometabolic targets have been actively pursued in other tumor types, however, glioblastoma research has been slow to exploit the therapeutic vulnerabilities of immunometabolism. In this review, we highlight the pathways that are most relevant to glioblastoma and focus on how these immunometabolic pathways influence tumor growth and immune suppression. We discuss hypoxia, glycolysis, tryptophan metabolism, arginine metabolism, 2-Hydroxyglutarate (2HG) metabolism, adenosine metabolism, and altered phospholipid metabolism, in order to provide an analysis and overview of the field of glioblastoma immunometabolism.

4.
Artigo em Inglês | MEDLINE | ID: mdl-30159311

RESUMO

We have recently demonstrated that partial inhibition of the cluster of differentiation 14 (CD14) innate immunity co-receptor pathway improves the long-term performance of intracortical microelectrodes better than complete inhibition. We hypothesized that partial activation of the CD14 pathway was critical to a neuroprotective response to the injury associated with initial and sustained device implantation. Therefore, here we investigated the role of two innate immunity receptors that closely interact with CD14 in inflammatory activation. We implanted silicon planar non-recording neural probes into knockout mice lacking Toll-like receptor 2 (Tlr2-/-), knockout mice lacking Toll-like receptor 4 (Tlr4-/-), and wildtype (WT) control mice, and evaluated endpoint histology at 2 and 16 weeks after implantation. Tlr4-/- mice exhibited significantly lower BBB permeability at acute and chronic time points, but also demonstrated significantly lower neuronal survival at the chronic time point. Inhibition of the Toll-like receptor 2 (TLR2) pathway had no significant effect compared to control animals. Additionally, when investigating the maturation of the neuroinflammatory response from 2 to 16 weeks, transgenic knockout mice exhibited similar histological trends to WT controls, except that knockout mice did not exhibit changes in microglia and macrophage activation over time. Together, our results indicate that complete genetic removal of Toll-like receptor 4 (TLR4) was detrimental to the integration of intracortical neural probes, while inhibition of TLR2 had no impact within the tests performed in this study. Therefore, approaches focusing on incomplete or acute inhibition of TLR4 may still improve intracortical microelectrode integration and long term recording performance.

5.
J Neural Eng ; 12(4): 046002, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26015427

RESUMO

OBJECTIVE: Oxidative stress events have been implicated to occur and facilitate multiple failure modes of intracortical microelectrodes. The goal of the present study was to evaluate the ability of a sustained concentration of an anti-oxidant and to reduce oxidative stress-mediated neurodegeneration for the application of intracortical microelectrodes. APPROACH: Non-functional microelectrodes were implanted into the cortex of male Sprague Dawley rats for up to sixteen weeks. Half of the animals received a daily intraperitoneal injection of the natural anti-oxidant resveratrol, at 30 mg kg(-1). The study was designed to investigate the biodistribution of the resveratrol, and the effects on neuroinflammation/neuroprotection following device implantation. MAIN RESULTS: Daily maintenance of a sustained range of resveratrol throughout the implantation period resulted in fewer degenerating neurons in comparison to control animals at both two and sixteen weeks post implantation. Initial and chronic improvements in neuronal viability in resveratrol-dosed animals were correlated with significant reductions in local superoxide anion accumulation around the implanted device at two weeks after implantation. Controls, receiving only saline injections, were also found to have reduced amounts of accumulated superoxide anion locally and less neurodegeneration than controls at sixteen weeks post-implantation. Despite observed benefits, thread-like adhesions were found between the liver and diaphragm in resveratrol-dosed animals. SIGNIFICANCE: Overall, our chronic daily anti-oxidant dosing scheme resulted in improvements in neuronal viability surrounding implanted microelectrodes, which could result in improved device performance. However, due to the discovery of thread-like adhesions, further work is still required to optimize a chronic anti-oxidant dosing regime for the application of intracortical microelectrodes.


Assuntos
Eletrodos Implantados/efeitos adversos , Encefalite/etiologia , Encefalite/prevenção & controle , Microeletrodos/efeitos adversos , Estilbenos/administração & dosagem , Animais , Anti-Inflamatórios não Esteroides/administração & dosagem , Antioxidantes/administração & dosagem , Doença Crônica , Eletroencefalografia/efeitos adversos , Eletroencefalografia/instrumentação , Encefalite/patologia , Injeções Intraperitoneais , Masculino , Ratos , Ratos Sprague-Dawley , Resveratrol , Resultado do Tratamento
6.
Biomaterials ; 35(22): 5637-46, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24755527

RESUMO

Rat models have emerged as a common tool to study neuroinflammation to intracortical microelectrodes. While a number of studies have attempted to understand the factors resulting in neuroinflammation using rat models, a complete understanding of key mechanistic pathways remains elusive. Transgenic mouse models, however, could facilitate a deeper understanding of mechanistic pathways due to an ease of genetic alteration. Therefore, the goal of the present study is to compare neuroinflammation following microelectrode implantation between the rat and the mouse model. Our study suggests that subtle differences in the classic neuroinflammatory markers exist between the animal models at both two and sixteen weeks post implantation. Most notably, neuronal densities surrounding microelectrodes were significantly lower in the rat model at two weeks, while similar densities were observed between the animal models at sixteen weeks. Physiological differences between the species and slight alterations in surgical methods are likely key contributors to the observed differences. Moving forward, we propose that differences in the time course of neuroinflammation between the animal models should be considered when trying to understand and prevent intracortical microelectrode failure.


Assuntos
Encéfalo/imunologia , Eletrodos Implantados/efeitos adversos , Encefalite/etiologia , Animais , Astrócitos/imunologia , Modelos Animais de Doenças , Encefalite/imunologia , Inflamação , Macrófagos/imunologia , Camundongos , Microglia/imunologia , Ratos
7.
J Mater Chem B ; 2(17): 2517-2529, 2014 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-24778808

RESUMO

A major limitation to the use of microelectrode technologies in both research and clinical applications is our inability to consistently record high quality neural signals. There is increasing evidence that recording instability is linked, in part, to neuroinflammation. A number of factors including extravasated blood products and macrophage released soluble factors are believed to mediate neuroinflammation and the resulting recording instability. However, the roles of other inflammatory stimuli, such as residual endotoxin contamination, are poorly understood. Therefore, to determine the effect of endotoxin contamination we examined the brain tissue response of C57/BL6 mice to non-functional microelectrodes with a range of endotoxin levels. Endotoxin contamination on the sterilized microelectrodes was measured using a limulus amebocyte lysate test following FDA guidelines. Microelectrodes sterilized by autoclave, dry heat, or ethylene oxide gas, resulted in variable levels of residual endotoxins of 0.55 EU/mL, 0.22 EU/mL, and 0.11 EU/mL, respectively. Histological evaluation at two weeks showed a direct correlation between microglia/macrophage activation and endotoxin levels. Interestingly, astrogliosis, neuronal loss, and blood brain barrier dysfunction demonstrated a threshold-dependent response to bacterial endotoxins. However, at sixteen weeks, no histological differences were detected, regardless of initial endotoxin levels. Therefore, our results demonstrate that endotoxin contamination, within the range examined, contributes to initial but not chronic microelectrode associated neuroinflammation. Our results suggest that minimizing residual endotoxins may impact early recording quality. To this end, endotoxins should be considered as a potent stimulant to the neuroinflammatory response to implanted intracortical microelectrodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA