RESUMO
Epithelia can eliminate apoptotic cells by apical extrusion. This is a complex morphogenetic event where expulsion of the apoptotic cell is accompanied by rearrangement of its immediate neighbors to form a rosette. A key mechanism for extrusion is constriction of an actomyosin network that neighbor cells form at their interface with the apoptotic cell. Here we report a complementary process of cytoskeletal relaxation that occurs when cortical contractility is down-regulated at the junctions between those neighbor cells themselves. This reflects a mechanosensitive Src family kinase (SFK) signaling pathway that is activated in neighbor cells when the apoptotic cell relaxes shortly after injury. Inhibiting SFK signaling blocks both the expulsion of apoptotic cells and the rosette formation among their neighbor cells. This reveals the complex pattern of spatially distinct contraction and relaxation that must be established in the neighboring epithelium for apoptotic cells to be extruded.
Assuntos
Junções Aderentes/metabolismo , Apoptose/fisiologia , Quinases da Família src/metabolismo , Citoesqueleto de Actina/metabolismo , Actomiosina/metabolismo , Junções Aderentes/fisiologia , Células Epiteliais/metabolismo , Epitélio/metabolismo , Epitélio/fisiologia , Humanos , Células MCF-7 , Morfogênese , Transdução de Sinais , Quinases da Família src/fisiologiaRESUMO
Epithelia are active materials where mechanical tension governs morphogenesis and homeostasis. But how that tension is regulated remains incompletely understood. We now report that caveolae control epithelial tension and show that this is necessary for oncogene-transfected cells to be eliminated by apical extrusion. Depletion of caveolin-1 (CAV1) increased steady-state tensile stresses in epithelial monolayers. As a result, loss of CAV1 in the epithelial cells surrounding oncogene-expressing cells prevented their apical extrusion. Epithelial tension in CAV1-depleted monolayers was increased by cortical contractility at adherens junctions. This reflected a signaling pathway, where elevated levels of phosphoinositide-4,5-bisphosphate (PtdIns(4,5)P2) recruited the formin, FMNL2, to promote F-actin bundling. Steady-state monolayer tension and oncogenic extrusion were restored to CAV1-depleted monolayers when tension was corrected by depleting FMNL2, blocking PtdIns(4,5)P2, or disabling the interaction between FMNL2 and PtdIns(4,5)P2. Thus, caveolae can regulate active mechanical tension for epithelial homeostasis by controlling lipid signaling to the actin cytoskeleton.
Assuntos
Cavéolas/metabolismo , Células Epiteliais/metabolismo , Proteínas Oncogênicas/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Células CACO-2 , Caveolina 1/metabolismo , Células Epiteliais/ultraestrutura , Forminas/metabolismo , Células HEK293 , Humanos , Masculino , Camundongos , Proteínas Oncogênicas/genética , Fosfatidilinositol 4,5-Difosfato/metabolismo , Estresse MecânicoRESUMO
In neurosecretory cells, myosin VI associated with secretory granules (SGs) mediates their activity-dependent recruitment to the cortical actin network and is necessary to sustain exocytosis. The mechanism by which myosin VI interacts with SGs is unknown. Using a myosin VI pull-down assay and mass spectrometry we identified Mena, a member of the ENA/VASP family, as a myosin VI binding partner in PC12 cells, and confirmed that Mena colocalized with myosin VI on SGs. Using a knock-sideways approach to inactivate the ENA/VASP family members by mitochondrial relocation, we revealed a concomitant redistribution of myosin VI. This was ensued by a reduction in the association of myosin VI with SGs, a decreased SG mobility and density in proximity to the plasma membrane as well as decreased evoked exocytosis. These data demonstrate that ENA/VASP proteins regulate SG exocytosis through modulating the activity of myosin VI.
Assuntos
Actinas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Exocitose/fisiologia , Vesículas Secretórias/metabolismo , Animais , Moléculas de Adesão Celular/metabolismo , Membrana Celular/metabolismo , Proteínas dos Microfilamentos/metabolismo , Células PC12 , Fosfoproteínas/metabolismo , RatosRESUMO
Munc18-1 is a key component of the exocytic machinery that controls neurotransmitter release. Munc18-1 heterozygous mutations cause developmental defects and epileptic phenotypes, including infantile epileptic encephalopathy (EIEE), suggestive of a gain of pathological function. Here, we used single-molecule analysis, gene-edited cells, and neurons to demonstrate that Munc18-1 EIEE-causing mutants form large polymers that coaggregate wild-type Munc18-1 in vitro and in cells. Surprisingly, Munc18-1 EIEE mutants also form Lewy body-like structures that contain α-synuclein (α-Syn). We reveal that Munc18-1 binds α-Syn, and its EIEE mutants coaggregate α-Syn. Likewise, removal of endogenous Munc18-1 increases the aggregative propensity of α-Syn(WT) and that of the Parkinson's disease-causing α-Syn(A30P) mutant, an effect rescued by Munc18-1(WT) expression, indicative of chaperone activity. Coexpression of the α-Syn(A30P) mutant with Munc18-1 reduced the number of α-Syn(A30P) aggregates. Munc18-1 mutations and haploinsufficiency may therefore trigger a pathogenic gain of function through both the corruption of native Munc18-1 and a perturbed chaperone activity for α-Syn leading to aggregation-induced neurodegeneration.
Assuntos
Chaperonas Moleculares/metabolismo , Proteínas Munc18/metabolismo , Degeneração Neural , Neurônios/metabolismo , Agregados Proteicos , alfa-Sinucleína/metabolismo , Animais , Animais Recém-Nascidos , Genótipo , Haploinsuficiência , Corpos de Lewy/metabolismo , Corpos de Lewy/patologia , Microscopia de Fluorescência , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Proteínas Munc18/química , Proteínas Munc18/genética , Mutação , Neurônios/patologia , Células PC12 , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Ligação Proteica , Conformação Proteica , Interferência de RNA , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Tempo , Transfecção , alfa-Sinucleína/química , alfa-Sinucleína/genéticaRESUMO
The phospholipase-catalyzed release of free fatty acids (FFAs) from phospholipids is implicated in many critical biological processes such as neurotransmission, inflammation, and cancer. However, determining the individual change in FFAs generated during these processes has remained challenging due to the limitations of current methods, and has hampered our understanding of these key mediators. Here, we developed an "iTRAQ"-like method for profiling FFAs by stable isotope tagging (FFAST), based on the differential labeling of the carboxyl group and designed to resolve analytical variance, through a multiplexed assay in cells and subcellular fractions. With nanomolar sensitivity, this method revealed a spectrum of saturated FFAs elicited during stimulation of exocytosis that was identical in neurons and neurosecretory cells. Purified secretory vesicles also generated these FFAs when challenged with cytosol. Our multiplex method will be invaluable to assess the range of FFAs generated in other physiological and pathological settings.
RESUMO
Munc18-1 is a critical component of the core machinery controlling neuroexocytosis. Recently, mutations in Munc18-1 leading to the development of early infantile epileptic encephalopathy have been discovered. However, which degradative pathway controls Munc18-1 levels and how it impacts on neuroexocytosis in this pathology is unknown. Using neurosecretory cells deficient in Munc18, we show that a disease-linked mutation, C180Y, renders the protein unstable at 37°C. Although the mutated protein retains its function as t-SNARE chaperone, neuroexocytosis is impaired, a defect that can be rescued at a lower permissive temperature. We reveal that Munc18-1 undergoes K48-linked polyubiquitination, which is highly increased by the mutation, leading to proteasomal, but not lysosomal, degradation. Our data demonstrate that functional Munc18-1 levels are controlled through polyubiquitination and proteasomal degradation. The C180Y disease-causing mutation greatly potentiates this degradative pathway, rendering Munc18-1 unable to facilitate neuroexocytosis, a phenotype that is reversed at a permissive temperature.
Assuntos
Proteínas Munc18/genética , Proteínas Munc18/metabolismo , Mutação Puntual , Complexo de Endopeptidases do Proteassoma/metabolismo , Animais , Exocitose/fisiologia , Humanos , Modelos Moleculares , Proteínas Munc18/química , Ligação Proteica , Estrutura Secundária de Proteína , Ratos , Proteínas SNARE/metabolismo , UbiquitinaçãoRESUMO
Regulated exocytosis in neurosecretory cells relies on the timely fusion of secretory granules (SGs) with the plasma membrane. Secretagogue stimulation leads to an enlargement of the cell footprint (surface area in contact with the coverslip), an effect previously attributed to exocytic fusion of SGs with the plasma membrane. Using total internal reflection fluorescence microscopy, we reveal the formation of filopodia-like structures in bovine chromaffin and PC12 cells driving the footprint expansion, suggesting the involvement of cortical actin network remodeling in this process. Using exocytosis-incompetent PC12 cells, we demonstrate that footprint enlargement is largely independent of SG fusion, suggesting that vesicular exocytic fusion plays a relatively minor role in filopodial expansion. The footprint periphery, including filopodia, undergoes extensive F-actin remodeling, an effect abolished by the actomyosin inhibitors cytochalasin D and blebbistatin. Imaging of both Lifeact-GFP and the SG marker protein neuropeptide Y-mCherry reveals that SGs actively translocate along newly forming actin tracks before undergoing fusion. Together, these data demonstrate that neurosecretory cells regulate the number of SGs undergoing exocytosis during sustained stimulation by controlling vesicular mobilization and translocation to the plasma membrane through actin remodeling. Such remodeling facilitates the de novo formation of fusion sites.
Assuntos
Sistemas Neurossecretores/metabolismo , Pseudópodes/metabolismo , Actinas/metabolismo , Actomiosina/antagonistas & inibidores , Actomiosina/metabolismo , Animais , Bovinos , Fusão Celular , Células Cultivadas , Células Cromafins/fisiologia , Células Cromafins/ultraestrutura , Vesículas Citoplasmáticas/fisiologia , Vesículas Citoplasmáticas/ultraestrutura , Citoesqueleto/fisiologia , Exocitose/fisiologia , Microscopia Eletrônica , Microscopia de Fluorescência , Miosina Tipo II/fisiologia , Plasticidade Neuronal/fisiologia , Sistemas Neurossecretores/citologia , Sistemas Neurossecretores/efeitos dos fármacos , Polimerização , Pseudópodes/efeitos dos fármacos , Pseudópodes/ultraestrutura , Vesículas Secretórias/fisiologia , Vesículas Secretórias/ultraestruturaRESUMO
Dysregulation of regulated exocytosis is linked to an array of pathological conditions, including neurodegenerative disorders, asthma, and diabetes. Understanding the molecular mechanisms underpinning neuroexocytosis including the processes that allow neurosecretory vesicles to access and fuse with the plasma membrane and to recycle post-fusion, is therefore critical to the design of future therapeutic drugs that will efficiently tackle these diseases. Despite considerable efforts to determine the principles of vesicular fusion, the mechanisms controlling the approach of vesicles to the plasma membrane in order to undergo tethering, docking, priming, and fusion remain poorly understood. All these steps involve the cortical actin network, a dense mesh of actin filaments localized beneath the plasma membrane. Recent work overturned the long-held belief that the cortical actin network only plays a passive constraining role in neuroexocytosis functioning as a physical barrier that partly breaks down upon entry of Ca(2+) to allow secretory vesicles to reach the plasma membrane. A multitude of new roles for the cortical actin network in regulated exocytosis have now emerged and point to highly dynamic novel functions of key myosin molecular motors. Myosins are not only believed to help bring about dynamic changes in the actin cytoskeleton, tethering and guiding vesicles to their fusion sites, but they also regulate the size and duration of the fusion pore, thereby directly contributing to the release of neurotransmitters and hormones. Here we discuss the functions of the cortical actin network, myosins, and their effectors in controlling the processes that lead to tethering, directed transport, docking, and fusion of exocytotic vesicles in regulated exocytosis.
RESUMO
S-acylation, the covalent attachment of palmitate and other fatty acids on cysteine residues, is a reversible post-translational modification that exerts diverse effects on protein functions. S-acylation is catalyzed by protein acyltransferases (PAT), while deacylation requires acyl-protein thioesterases (APT), with numerous inhibitors for these enzymes having already been developed and characterized. Among these inhibitors, the palmitate analog 2-brompalmitate (2-BP) is the most commonly used to inhibit palmitoylation in cells. Nevertheless, previous results from our laboratory have suggested that 2-BP could affect protein deacylation. Here, we further investigated in vivo and in vitro the effect of 2-BP on the acylation/deacylation protein machinery, with it being observed that 2-BP, in addition to inhibiting PAT activity in vivo, also perturbed the acylation cycle of GAP-43 at the level of depalmitoylation and consequently affected its kinetics of membrane association. Furthermore, 2-BP was able to inhibit in vitro the enzymatic activities of human APT1 and APT2, the only two thioesterases shown to mediate protein deacylation, through an uncompetitive mechanism of action. In fact, APT1 and APT2 hydrolyzed both the monomeric form as well as the micellar state of the substrate palmitoyl-CoA. On the basis of the obtained results, as APTs can mediate deacylation on membrane bound and unbound substrates, this suggests that the access of APTs to the membrane interface is not a necessary requisite for deacylation. Moreover, as the enzymatic activity of APTs was inhibited by 2-BP treatment, then the kinetics analysis of protein acylation using 2-BP should be carefully interpreted, as this drug also inhibits protein deacylation.
Assuntos
Inibidores Enzimáticos/farmacologia , Proteína GAP-43/metabolismo , Palmitatos/farmacologia , Tioléster Hidrolases/antagonistas & inibidores , Acilação/efeitos dos fármacos , Animais , Células CHO , Cricetinae , Cricetulus , Humanos , Cinética , Tioléster Hidrolases/metabolismoRESUMO
Munc18-1 plays a dual role in transporting syntaxin-1A (Sx1a) to the plasma membrane and regulating SNARE-mediated membrane fusion. As impairment of either function leads to a common exocytic defect, assigning specific roles for various Munc18-1 domains has proved difficult. Structural analyses predict that a loop region in Munc18-1 domain 3a could catalyse the conversion of Sx1a from a 'closed', fusion-incompetent to an 'open', fusion-competent conformation. As this conversion occurs at the plasma membrane, mutations in this loop could potentially separate the chaperone and exocytic functions of Munc18-1. Expression of a Munc18-1 deletion mutant lacking 17 residues of the domain 3a loop (Munc18-1(Δ317-333)) in PC12 cells deficient in endogenous Munc18 (DKD-PC12 cells) fully rescued transport of Sx1a to the plasma membrane, but not exocytic secretory granule fusion. In vitro binding of Munc18-1(Δ317-333) to Sx1a was indistinguishable from that of full-length Munc18-1, consistent with the critical role of the closed conformation in Sx1a transport. However, in DKD-PC12 cells, Munc18-1(Δ317-333) binding to Sx1a was greatly reduced compared to that of full-length Munc18-1, suggesting that closed conformation binding contributes little to the overall interaction at the cell surface. Furthermore, we found that Munc18-1(Δ317-333) could bind SNARE complexes in vitro, suggesting that additional regulatory factors underpin the exocytic function of Munc18-1 in vivo. Together, these results point to a defined role for Munc18-1 in facilitating exocytosis linked to the loop region of domain 3a that is clearly distinct from its function in Sx1a transport.
Assuntos
Membrana Celular/metabolismo , Exocitose/fisiologia , Proteínas Munc18/metabolismo , Sintaxina 1/metabolismo , Animais , Membrana Celular/genética , Humanos , Proteínas Munc18/genética , Células PC12 , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Transporte Proteico/fisiologia , Ratos , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Sintaxina 1/genéticaRESUMO
Before undergoing neuroexocytosis, secretory granules (SGs) are mobilized and tethered to the cortical actin network by an unknown mechanism. Using an SG pull-down assay and mass spectrometry, we found that myosin VI was recruited to SGs in a Ca(2+)-dependent manner. Interfering with myosin VI function in PC12 cells reduced the density of SGs near the plasma membrane without affecting their biogenesis. Myosin VI knockdown selectively impaired a late phase of exocytosis, consistent with a replenishment defect. This exocytic defect was selectively rescued by expression of the myosin VI small insert (SI) isoform, which efficiently tethered SGs to the cortical actin network. These myosin VI SI-specific effects were prevented by deletion of a c-Src kinase phosphorylation DYD motif, identified in silico. Myosin VI SI thus recruits SGs to the cortical actin network, potentially via c-Src phosphorylation, thereby maintaining an active pool of SGs near the plasma membrane.
Assuntos
Actinas/metabolismo , Exocitose , Cadeias Pesadas de Miosina/metabolismo , Vesículas Secretórias/metabolismo , Sequência de Aminoácidos , Animais , Cálcio/metabolismo , Bovinos , Técnicas de Silenciamento de Genes , Humanos , Espectrometria de Massas , Dados de Sequência Molecular , Cadeias Pesadas de Miosina/química , Neurônios/citologia , Neurônios/metabolismo , Células PC12 , Peptídeos/química , Fosforilação , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Ratos , Vesículas Secretórias/ultraestrutura , Quinases da Família src/metabolismoRESUMO
An acylation/deacylation cycle is necessary to maintain the steady-state subcellular distribution and biological activity of S-acylated peripheral proteins. Despite the progress that has been made in identifying and characterizing palmitoyltransferases (PATs), much less is known about the thioesterases involved in protein deacylation. In this work, we investigated the deacylation of growth-associated protein-43 (GAP-43), a dually acylated protein at cysteine residues 3 and 4. Using fluorescent fusion constructs, we measured in vivo the rate of deacylation of GAP-43 and its single acylated mutants in Chinese hamster ovary (CHO)-K1 and human HeLa cells. Biochemical and live cell imaging experiments demonstrated that single acylated mutants were completely deacylated with similar kinetic in both cell types. By RT-PCR we observed that acyl-protein thioesterase 1 (APT-1), the only bona fide thioesterase shown to mediate deacylation in vivo, is expressed in HeLa cells, but not in CHO-K1 cells. However, APT-1 overexpression neither increased the deacylation rate of single acylated GAP-43 nor affected the steady-state subcellular distribution of dually acylated GAP-43 both in CHO-K1 and HeLa cells, indicating that GAP-43 deacylation is not mediated by APT-1. Accordingly, we performed a bioinformatic search to identify putative candidates with acyl-protein thioesterase activity. Among several candidates, we found that APT-2 is expressed both in CHO-K1 and HeLa cells and its overexpression increased the deacylation rate of single acylated GAP-43 and affected the steady-state localization of diacylated GAP-43 and H-Ras. Thus, the results demonstrate that APT-2 is the protein thioesterase involved in the acylation/deacylation cycle operating in GAP-43 subcellular distribution.