Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Bull Entomol Res ; 108(4): 547-555, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29198198

RESUMO

In this study, we investigated resistance traits to the sugarcane borer Diatraea saccharalis Fab. (Lepidoptera: Crambidae) in the leaves and stalks of six sugarcane cultivars in a series of greenhouse and laboratory assays. Investigation of plant factors and infestation rates to better discriminate stalk damage by the sugarcane borer indicated that infestation of 7-month-old, single plants with 20 larvae at the third or fourth instar per plant was suitable to assess tunneling length. Three cultivars (i.e. SP803280, RB928064, and RB835486) had lower stalk damage (i.e. tunnel length) than cultivar SP891115, which exhibited relatively greater susceptibility to tunneling by the borer. The time required for the larvae to enter the sugarcane stalk was longer for cultivar SP803280, indicating resistance traits on the stalk surface, which correlated with lower stalk damage. Larvae feeding on SP813250 stalks had the lowest weight gain, indicating that this cultivar has resistance traits to larval development within its stalks. Cultivars RB867515 and SP891115 resulted in the highest mortality of early-stage larvae feeding on leaves, indicating the presence of resistance factors in their leaves. Multi-trait cluster and principal component analyses placed the cultivars into three and four clusters, respectively. The cultivars placed in different groups that exhibited resistance to leaf feeding, stalk entrance, and tunneling by the sugarcane borer could be used for crossings in sugarcane breeding programs with the goal of obtaining higher levels of resistance to D. saccharalis.


Assuntos
Mariposas/fisiologia , Saccharum/parasitologia , Animais , Flores/parasitologia , Larva/fisiologia , Folhas de Planta/parasitologia , Saccharum/fisiologia
2.
Bull Entomol Res ; 108(4): 556-564, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29166963

RESUMO

The purpose of this study was to investigate and compare root morpho-anatomical traits and physiological responses of susceptible (SP81-3250) and resistant (H. Kawandang) sugarcane genotypes exposed to the attack by nymphs of spittlebug Mahanarva fimbriolata (Stål) (Hemiptera: Cercopidae). Two experiments were conducted to compare the damage caused by spittlebug nymphs on fresh and dry biomass weight; lignin content in stalks; root anatomy; chlorophyll content; photosynthetic rate (A); carboxylation efficiency (A/Ci); stomatal conductance (gS) and transpiration rate (E) of these genotypes. SP81-3250 consistently obtained significantly higher damage scores than H. Kawandang in both experiments, confirming the previously observed level of resistance in each genotype. Attack by spittlebug nymphs had a much higher effect on both fresh and dry biomass weight, chlorophyll content, A, A/Ci, gs and E of SP81-3250, than that on H. Kawandang. Anatomical studies indicated the presence of aerenchyma tissue in the root cortex of SP81-3250, a feature which may facilitate penetration of the nymph's stylet into the vascular cylinder. In contrast, roots of H. Kawandang are characterized by having more dense and compact parenchyma cells. In addition, infested plants of this genotype contained an unidentified mucilaginous compound in the vascular cylinder of the roots. We conclude that resistance of H. Kawandang to spittlebug is related to the ability of this genotype to maintain normal chlorophyll content, as well as stomatal conductance and photosynthesis, thus, allowing for biomass accumulation under spittlebug attack, in contrast to SP81-3250. In addition, the presence of more compact and denser parenchymal cells, as well as that of an induced mucilaginous compound in the root's vascular cylinder, are likely to hinder host-feeding activity in nymphs, causing higher nymph mortality and therefore, reduced damage in plants of this genotype.


Assuntos
Hemípteros/fisiologia , Saccharum/parasitologia , Animais , Clorofila/análise , Genótipo , Ninfa/fisiologia , Fotossíntese , Folhas de Planta/química , Raízes de Plantas/anatomia & histologia , Caules de Planta/parasitologia , Transpiração Vegetal , Saccharum/anatomia & histologia , Saccharum/genética , Saccharum/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA