Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
2.
Sci Rep ; 12(1): 5349, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35354848

RESUMO

Acoustic levitation has attracted attention in terms of chemical and biochemical analysis in combination with various analytical methods because of its unique container-less environment for samples that is not reliant on specific material characteristics. However, loading samples with very high viscosity is difficult. To expand the scope, we propose the use of polymer thin films as sample holders, whereby the sample is dispensed on a film that is subsequently loaded onto an acoustic levitator. When applied for protein crystallography experiments, rotation controllability and positional stability are important prerequisites. We therefore study the acoustic levitation and rotation of thin films with an aspect ratio (the diameter-to-thickness ratio) of 80-240, which is an order of magnitude larger than those reported previously. For films with empirically optimized shapes, we find that it is possible to control the rotation speed in the range of 1-4 rotations per second while maintaining a positional stability of 12 ± 5 µm. The acoustic radiation force acting on the films is found to be a factor of 26-30 higher than that for same-volume water droplets. We propose use cases of the developed films for protein crystallography experiments and demonstrate data collections for large single crystal samples at room temperature.


Assuntos
Acústica , Proteínas , Cristalografia , Temperatura , Água/química
3.
Proc Natl Acad Sci U S A ; 117(49): 31088-31093, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33229574

RESUMO

Formation of highly symmetric skeletal elements in demosponges, called spicules, follows a unique biomineralization mechanism in which polycondensation of an inherently disordered amorphous silica is guided by a highly ordered proteinaceous scaffold, the axial filament. The enzymatically active proteins, silicateins, are assembled into a slender hybrid silica/protein crystalline superstructure that directs the morphogenesis of the spicules. Furthermore, silicateins are known to catalyze the formation of a large variety of other technologically relevant organic and inorganic materials. However, despite the biological and biotechnological importance of this macromolecule, its tertiary structure was never determined. Here we report the atomic structure of silicatein and the entire mineral/organic hybrid assembly with a resolution of 2.4 Å. In this work, the serial X-ray crystallography method was successfully adopted to probe the 2-µm-thick filaments in situ, being embedded inside the skeletal elements. In combination with imaging and chemical analysis using high-resolution transmission electron microscopy, we provide detailed information on the enzymatic activity of silicatein, its crystallization, and the emergence of a functional three-dimensional silica/protein superstructure in vivo. Ultimately, we describe a naturally occurring mineral/protein crystalline assembly at atomic resolution.

4.
Science ; 363(6427)2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30733387

RESUMO

Diatoms are abundant photosynthetic organisms in aquatic environments and contribute 40% of its primary productivity. An important factor that contributes to the success of diatoms is their fucoxanthin chlorophyll a/c-binding proteins (FCPs), which have exceptional light-harvesting and photoprotection capabilities. Here, we report the crystal structure of an FCP from the marine diatom Phaeodactylum tricornutum, which reveals the binding of seven chlorophylls (Chls) a, two Chls c, seven fucoxanthins (Fxs), and probably one diadinoxanthin within the protein scaffold. Efficient energy transfer pathways can be found between Chl a and c, and each Fx is surrounded by Chls, enabling the energy transfer and quenching via Fx highly efficient. The structure provides a basis for elucidating the mechanisms of blue-green light harvesting, energy transfer, and dissipation in diatoms.


Assuntos
Proteínas de Ligação à Clorofila/química , Diatomáceas/química , Fotossíntese , Clorofila/química , Clorofila A/química , Transferência de Energia , Luz , Estrutura Quaternária de Proteína , Tilacoides/química , Xantofilas/química
5.
Methods Mol Biol ; 1635: 139-168, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28755368

RESUMO

There is growing interest in the use of mammalian protein expression systems, and in the use of antibody-derived chaperones, for structural studies. Here, we describe protocols ranging from the production of recombinant membrane proteins in stable inducible cell lines to biophysical characterization of purified membrane proteins in complex with llama antibody domains. These protocols were used to solve the structure of the mouse 5-HT3 serotonin receptor but are of broad applicability for crystallization or cryo-electron microscopy projects.


Assuntos
Anticorpos/metabolismo , Receptores 5-HT3 de Serotonina/química , Receptores 5-HT3 de Serotonina/metabolismo , Proteínas Recombinantes/metabolismo , Animais , Camelus , Linhagem Celular , Microscopia Crioeletrônica , Cristalografia por Raios X , Expressão Gênica , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Estabilidade Proteica , Receptores 5-HT3 de Serotonina/genética , Proteínas Recombinantes/química
6.
Sci Rep ; 6: 25558, 2016 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-27150272

RESUMO

Increasing the data acquisition rate of X-ray diffraction images for macromolecular crystals at room temperature at synchrotrons has the potential to significantly accelerate both structural analysis of biomolecules and structure-based drug developments. Using lysozyme model crystals, we demonstrated the rapid acquisition of X-ray diffraction datasets by combining a high frame rate pixel array detector with ultrasonic acoustic levitation of protein crystals in liquid droplets. The rapid spinning of the crystal within a levitating droplet ensured an efficient sampling of the reciprocal space. The datasets were processed with a program suite developed for serial femtosecond crystallography (SFX). The structure, which was solved by molecular replacement, was found to be identical to the structure obtained by the conventional oscillation method for up to a 1.8-Å resolution limit. In particular, the absence of protein crystal damage resulting from the acoustic levitation was carefully established. These results represent a key step towards a fully automated sample handling and measurement pipeline, which has promising prospects for a high acquisition rate and high sample efficiency for room temperature X-ray crystallography.

7.
IUCrJ ; 3(Pt 2): 115-26, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-27006775

RESUMO

Crystal diffraction data of heart fatty acid binding protein (H-FABP) in complex with oleic acid were measured at room temperature with high-resolution X-ray and neutron protein crystallography (0.98 and 1.90 Šresolution, respectively). These data provided very detailed information about the cluster of water molecules and the bound oleic acid in the H-FABP large internal cavity. The jointly refined X-ray/neutron structure of H-FABP was complemented by a transferred multipolar electron-density distribution using the parameters of the ELMAMII library. The resulting electron density allowed a precise determination of the electrostatic potential in the fatty acid (FA) binding pocket. Bader's quantum theory of atoms in molecules was then used to study interactions involving the internal water molecules, the FA and the protein. This approach showed H⋯H contacts of the FA with highly conserved hydrophobic residues known to play a role in the stabilization of long-chain FAs in the binding cavity. The determination of water hydrogen (deuterium) positions allowed the analysis of the orientation and electrostatic properties of the water molecules in the very ordered cluster. As a result, a significant alignment of the permanent dipoles of the water molecules with the protein electrostatic field was observed. This can be related to the dielectric properties of hydration layers around proteins, where the shielding of electrostatic interactions depends directly on the rotational degrees of freedom of the water molecules in the interface.

8.
J Struct Biol ; 192(3): 461-469, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26470812

RESUMO

We demonstrate absolute quantitative mass density mapping in three dimensions of frozen-hydrated biological matter with an isotropic resolution of 180 nm. As model for a biological system we use Chlamydomonas cells in buffer solution confined in a microcapillary. We use ptychographic X-ray computed tomography to image the entire specimen, including the 18 µm-diameter capillary, thereby providing directly an absolute mass density measurement of biological matter with an uncertainty of about 6%. The resulting maps have sufficient contrast to distinguish cells from the surrounding ice and several organelles of different densities inside the cells. Organelles are identified by comparison with a stained, resin-embedded specimen, which can be compared with established transmission electron microscopy results. For some identified organelles, the knowledge of their elemental composition reduces the uncertainty of their mass density measurement down to 1% with values consistent with previous measurements of dry weight concentrations in thin cellular sections by scanning transmission electron microscopy. With prospects of improving the spatial resolution in the near future, we expect that the capability of non-destructive three-dimensional mapping of mass density in biological samples close to their native state becomes a valuable method for measuring the packing of organic matter on the nanoscale.


Assuntos
Chlamydomonas reinhardtii/fisiologia , Chlamydomonas reinhardtii/ultraestrutura , Imageamento Tridimensional/métodos , Organelas/ultraestrutura , Tomografia Computadorizada por Raios X/métodos , Congelamento
9.
Nature ; 512(7514): 276-81, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-25119048

RESUMO

Neurotransmitter-gated ion channels of the Cys-loop receptor family mediate fast neurotransmission throughout the nervous system. The molecular processes of neurotransmitter binding, subsequent opening of the ion channel and ion permeation remain poorly understood. Here we present the X-ray structure of a mammalian Cys-loop receptor, the mouse serotonin 5-HT3 receptor, at 3.5 Å resolution. The structure of the proteolysed receptor, made up of two fragments and comprising part of the intracellular domain, was determined in complex with stabilizing nanobodies. The extracellular domain reveals the detailed anatomy of the neurotransmitter binding site capped by a nanobody. The membrane domain delimits an aqueous pore with a 4.6 Å constriction. In the intracellular domain, a bundle of five intracellular helices creates a closed vestibule where lateral portals are obstructed by loops. This 5-HT3 receptor structure, revealing part of the intracellular domain, expands the structural basis for understanding the operating mechanism of mammalian Cys-loop receptors.


Assuntos
Receptores 5-HT3 de Serotonina/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Cristalografia por Raios X , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Neurotransmissores/metabolismo , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Receptores 5-HT3 de Serotonina/metabolismo
10.
J Synchrotron Radiat ; 21(Pt 2): 340-51, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24562555

RESUMO

A new diffractometer for microcrystallography has been developed for the three macromolecular crystallography beamlines of the Swiss Light Source. Building upon and critically extending previous developments realised for the high-resolution endstations of the two undulator beamlines X06SA and X10SA, as well as the super-bend dipole beamline X06DA, the new diffractometer was designed to the following core design goals. (i) Redesign of the goniometer to a sub-micrometer peak-to-peak cylinder of confusion for the horizontal single axis. Crystal sizes down to at least 5 µm and advanced sample-rastering and scanning modes are supported. In addition, it can accommodate the new multi-axis goniometer PRIGo (Parallel Robotics Inspired Goniometer). (ii) A rapid-change beam-shaping element system with aperture sizes down to a minimum of 10 µm for microcrystallography measurements. (iii) Integration of the on-axis microspectrophotometer MS3 for microscopic sample imaging with 1 µm image resolution. Its multi-mode optical spectroscopy module is always online and supports in situ UV/Vis absorption, fluorescence and Raman spectroscopy. (iv) High stability of the sample environment by a mineral cast support construction and by close containment of the cryo-stream. Further features are the support for in situ crystallization plate screening and a minimal achievable detector distance of 120 mm for the Pilatus 6M, 2M and the macromolecular crystallography group's planned future area detector Eiger 16M.

11.
Proc Natl Acad Sci U S A ; 104(49): 19303-8, 2007 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-18032606

RESUMO

The Rhesus (Rh) proteins are a family of integral membrane proteins found throughout the animal kingdom that also occur in a number of lower eukaryotes. The significance of Rh proteins derives from their presence in the human red blood cell membrane, where they constitute the second most important group of antigens used in transfusion medicine after the ABO group. Rh proteins are related to the ammonium transport (Amt) protein family and there is considerable evidence that, like Amt proteins, they function as ammonia channels. We have now solved the structure of a rare bacterial homologue (from Nitrosomonas europaea) of human Rh50 proteins at a resolution of 1.3 A. The protein is a trimer, and analysis of its subunit interface strongly argues that all Rh proteins are likely to be homotrimers and that the human erythrocyte proteins RhAG and RhCE/D are unlikely to form heterooligomers as previously proposed. When compared with structures of bacterial Amt proteins, NeRh50 shows several distinctive features of the substrate conduction pathway that support the concept that Rh proteins have much lower ammonium affinities than Amt proteins and might potentially function bidirectionally.


Assuntos
Amônia/metabolismo , Proteínas de Bactérias/química , Proteínas de Membrana Transportadoras/química , Nitrosomonas europaea/metabolismo , Sequência de Aminoácidos , Cristalografia por Raios X , Transporte de Íons , Dados de Sequência Molecular , Fenilalanina/química , Conformação Proteica
12.
J Med Chem ; 47(18): 4530-7, 2004 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-15317464

RESUMO

Structure determinations of human aldose reductase holoenzyme in complex with the 2S4R-,2R4S- and 2R4R-isomers of the potent inhibitor Fidarestat ((2S,4S)-6-fluoro-2',5'-dioxospiro[chroman-4,4'-imidazoline]-2-carboxamide) were carried out in order to elucidate the binding modes responsible for the differences in their inhibitory potencies. In the complex structure with the 2R4S-isomer the cyclic imide moiety formed hydrogen bonds with the side-chains of Trp111, Tyr48 and His110. In the attempt to determine the complex structure with the least potent 2R4R-isomer this ligand was not observed, and instead, the active site was simultaneously occupied by two citrate molecules (occupancies of 60% and 40%). In the case of 2S4R, the active site was occupied by a citrate molecule which anchors the 2S4R-isomer from its carbamoyl group. The structures of the complexes suggest that the differences in the interactions between the cyclic imide rings and carbamoyl groups of the compounds with residues His110, Trp111, Trp219 and Cys298 account for differences in their inhibitory potencies.


Assuntos
Aldeído Redutase/química , Cristalografia por Raios X , Imidazóis/química , Imidazolidinas , Aldeído Redutase/antagonistas & inibidores , Sítios de Ligação , Citratos/química , Inibidores Enzimáticos/química , Humanos , Imidazóis/farmacologia , Estrutura Molecular , Ligação Proteica , Estereoisomerismo , Especificidade por Substrato
13.
Proteins ; 55(4): 805-13, 2004 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-15146479

RESUMO

The X-ray structures of human aldose reductase holoenzyme in complex with the inhibitors Fidarestat (SNK-860) and Minalrestat (WAY-509) were determined at atomic resolutions of 0.92 A and 1.1 A, respectively. The hydantoin and succinimide moieties of the inhibitors interacted with the conserved anion-binding site located between the nicotinamide ring of the coenzyme and active site residues Tyr48, His110, and Trp111. Minalrestat's hydrophobic isoquinoline ring was bound in an adjacent pocket lined by residues Trp20, Phe122, and Trp219, with the bromo-fluorobenzyl group inside the "specificity" pocket. The interactions between Minalrestat's bromo-fluorobenzyl group and the enzyme include the stacking against the side-chain of Trp111 as well as hydrogen bonding distances with residues Leu300 and Thr113. The carbamoyl group in Fidarestat formed a hydrogen bond with the main-chain nitrogen atom of Leu300. The atomic resolution refinement allowed the positioning of hydrogen atoms and accurate determination of bond lengths of the inhibitors, coenzyme NADP+ and active-site residue His110. The 1'-position nitrogen atom in the hydantoin and succinimide moieties of Fidarestat and Minalrestat, respectively, form a hydrogen bond with the Nepsilon2 atom of His 110. For Fidarestat, the electron density indicated two possible positions for the H-atom in this bond. Furthermore, both native and anomalous difference maps indicated the replacement of a water molecule linked to His110 by a Cl-ion. These observations suggest a mechanism in which Fidarestat is bound protonated and becomes negatively charged by donating the proton to His110, which may have important implications on drug design.


Assuntos
Aldeído Redutase/química , Inibidores Enzimáticos/química , Imidazóis/química , Imidazolidinas , Imidas/química , Modelos Moleculares , Quinolonas/química , Aldeído Redutase/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Desenho de Fármacos , Inibidores Enzimáticos/metabolismo , Holoenzimas/química , Holoenzimas/metabolismo , Imidazóis/metabolismo , Imidas/metabolismo , Substâncias Macromoleculares , Estrutura Molecular , Quinolonas/metabolismo
14.
J Mol Biol ; 331(3): 725-34, 2003 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-12899840

RESUMO

Alpha-tocopherol transfer protein (alpha-TTP) is a liver protein responsible for the selective retention of alpha-tocopherol from dietary vitamin E, which is a mixture of alpha, beta, gamma, and delta-tocopherols and the corresponding tocotrienols. The alpha-TTP-mediated transfer of alpha-tocopherol into nascent VLDL is the major determinant of plasma alpha-tocopherol levels in humans. Mutations in the alpha-TTP gene have been detected in patients suffering from low plasma alpha-tocopherol and ataxia with isolated vitamin E deficiency (AVED). The crystal structure of alpha-TTP reveals two conformations. In its closed tocopherol-charged form, a mobile helical surface segment seals the hydrophobic binding pocket. In the presence of detergents, an open conformation is observed, which probably represents the membrane-bound form. The selectivity of alpha-TTP for RRR-alpha-tocopherol is explained from the van der Waals contacts occurring in the lipid-binding pocket. Mapping the known mutations leading to AVED onto the crystal structure shows that no mutations occur directly in the binding pocket.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Vitamina E/metabolismo , Ataxia/complicações , Ataxia/genética , Sítios de Ligação , Transporte Biológico , Proteínas de Transporte/genética , Cristalografia por Raios X , Humanos , Ligantes , Metabolismo dos Lipídeos , Modelos Moleculares , Conformação Proteica , Retinose Pigmentar/complicações , Retinose Pigmentar/genética , Especificidade por Substrato , Deficiência de Vitamina E/complicações , Deficiência de Vitamina E/genética , alfa-Tocoferol/análogos & derivados , alfa-Tocoferol/metabolismo
15.
Structure ; 10(11): 1533-40, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12429094

RESUMO

Supernatant protein factor (SPF) promotes the epoxidation of squalene catalyzed by microsomes. Several studies suggest its in vivo role in the cholesterol biosynthetic pathway by a yet unknown mechanism. SPF belongs to a family of lipid binding proteins called CRAL_TRIO, which include yeast phosphatidylinositol transfer protein Sec14 and tocopherol transfer protein TTP. The crystal structure of human SPF at a resolution of 1.9 A reveals a two domain topology. The N-terminal 275 residues form a Sec14-like domain, while the C-terminal 115 residues consist of an eight-stranded jelly-roll barrel similar to that found in many viral protein structures. The ligand binding cavity has a peculiar horseshoe-like shape. Contrary to the Sec14 crystal structure, the lipid-exchange loop is in a closed conformation, suggesting a mechanism for lipid exchange.


Assuntos
Proteínas de Transporte/química , Lipoproteínas/química , Transativadores , Cristalografia por Raios X , Humanos , Ligantes , Metabolismo dos Lipídeos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Espectrometria de Massas por Ionização por Electrospray
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA