Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
bioRxiv ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38826340

RESUMO

The brain augments glucose production during fasting, but the mechanisms are poorly understood. Here, we show that Cckbr-expressing neurons in the ventromedial hypothalamic nucleus (VMNCckbr cells) prevent low blood glucose during fasting through sympathetic nervous system (SNS)-mediated augmentation of adipose tissue lipolysis and substrate release. Activating VMNCckbr neurons mobilized gluconeogenic substrates without altering glycogenolysis or gluconeogenic enzyme expression. Silencing these cells (CckbrTetTox animals) reduced fasting blood glucose, impaired lipolysis, and decreased circulating glycerol (but not other gluconeogenic substrates) despite normal insulin, counterregulatory hormones, liver glycogen, and liver gluconeogenic gene expression. Furthermore, ß3-adrenergic adipose tissue stimulation in CckbrTetTox animals restored lipolysis and blood glucose. Hence, VMNCckbr neurons impact blood glucose not by controlling islet or liver physiology, but rather by mobilizing gluconeogenic substrates. These findings establish a central role for hypothalamic and SNS signaling during normal glucose homeostasis and highlight the importance of gluconeogenic substrate mobilization during physiologic fasting.

2.
J Clin Invest ; 133(19)2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37581939

RESUMO

The adipose-derived hormone leptin acts via its receptor (LepRb) in the brain to control energy balance. A potentially unidentified population of GABAergic hypothalamic LepRb neurons plays key roles in the restraint of food intake and body weight by leptin. To identify markers for candidate populations of LepRb neurons in an unbiased manner, we performed single-nucleus RNA-Seq of enriched mouse hypothalamic LepRb cells, identifying several previously unrecognized populations of hypothalamic LepRb neurons. Many of these populations displayed strong conservation across species, including GABAergic Glp1r-expressing LepRb (LepRbGlp1r) neurons, which expressed more Lepr than other LepRb cell populations. Ablating Lepr from LepRbGlp1r cells provoked hyperphagic obesity without impairing energy expenditure. Similarly, improvements in energy balance caused by Lepr reactivation in GABA neurons of otherwise Lepr-null mice required Lepr expression in GABAergic Glp1r-expressing neurons. Furthermore, restoration of Glp1r expression in LepRbGlp1r neurons in otherwise Glp1r-null mice enabled food intake suppression by the GLP1R agonist, liraglutide. Thus, the conserved GABAergic LepRbGlp1r neuron population plays crucial roles in the suppression of food intake by leptin and GLP1R agonists.


Assuntos
Leptina , Obesidade , Camundongos , Animais , Leptina/genética , Leptina/metabolismo , Obesidade/genética , Obesidade/prevenção & controle , Obesidade/metabolismo , Hipotálamo/metabolismo , Camundongos Knockout , Neurônios GABAérgicos/metabolismo , Receptores para Leptina/genética , Receptores para Leptina/metabolismo , Ingestão de Alimentos/genética
3.
Elife ; 102021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-34018926

RESUMO

The ventromedial hypothalamic nucleus (VMH) controls diverse behaviors and physiologic functions, suggesting the existence of multiple VMH neural subtypes with distinct functions. Combing translating ribosome affinity purification with RNA-sequencing (TRAP-seq) data with single-nucleus RNA-sequencing (snRNA-seq) data, we identified 24 mouse VMH neuron clusters. Further analysis, including snRNA-seq data from macaque tissue, defined a more tractable VMH parceling scheme consisting of six major genetically and anatomically differentiated VMH neuron classes with good cross-species conservation. In addition to two major ventrolateral classes, we identified three distinct classes of dorsomedial VMH neurons. Consistent with previously suggested unique roles for leptin receptor (Lepr)-expressing VMH neurons, Lepr expression marked a single dorsomedial class. We also identified a class of glutamatergic VMH neurons that resides in the tuberal region, anterolateral to the neuroanatomical core of the VMH. This atlas of conserved VMH neuron populations provides an unbiased starting point for the analysis of VMH circuitry and function.


Assuntos
Família Multigênica , Neurônios/fisiologia , Transcriptoma , Núcleo Hipotalâmico Ventromedial/fisiologia , Animais , Análise por Conglomerados , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Genótipo , Ácido Glutâmico/metabolismo , Macaca mulatta , Camundongos Transgênicos , Neurônios/metabolismo , Fenótipo , RNA-Seq , Receptores para Leptina/genética , Receptores para Leptina/metabolismo , Especificidade da Espécie , Fator Esteroidogênico 1/genética , Fator Esteroidogênico 1/metabolismo , Núcleo Hipotalâmico Ventromedial/citologia , Núcleo Hipotalâmico Ventromedial/metabolismo
4.
Development ; 147(20)2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-32994164

RESUMO

Between embryonic days 10.5 and 14.5, active proliferation drives rapid elongation of the murine midgut epithelial tube. Within this pseudostratified epithelium, nuclei synthesize DNA near the basal surface and move apically to divide. After mitosis, the majority of daughter cells extend a long, basally oriented filopodial protrusion, building a de novo path along which their nuclei can return to the basal side. WNT5A, which is secreted by surrounding mesenchymal cells, acts as a guidance cue to orchestrate this epithelial pathfinding behavior, but how this signal is received by epithelial cells is unknown. Here, we have investigated two known WNT5A receptors: ROR2 and RYK. We found that epithelial ROR2 is dispensable for midgut elongation. However, loss of Ryk phenocopies the Wnt5a-/- phenotype, perturbing post-mitotic pathfinding and leading to apoptosis. These studies reveal that the ligand-receptor pair WNT5A-RYK acts as a navigation system to instruct filopodial pathfinding, a process that is crucial for continuous cell cycling to fuel rapid midgut elongation.


Assuntos
Sistema Digestório/crescimento & desenvolvimento , Sistema Digestório/metabolismo , Pseudópodes/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Animais , Apoptose , Núcleo Celular/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Epitélio/metabolismo , Feminino , Masculino , Mesoderma/metabolismo , Camundongos Endogâmicos C57BL , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo
5.
Mol Metab ; 32: 168-175, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32029227

RESUMO

BACKGROUND: Leptin acts via its receptor, LepRb, on specialized neurons in the brain to modulate energy balance and glucose homeostasis. LepRb→STAT3 signaling plays a crucial role in leptin action, but LepRb also mediates an additional as-yet-unidentified signal (Signal 2) that is important for leptin action. Signal 2 requires LepRb regions in addition to those required for JAK2 activation but operates independently of STAT3 and LepRb phosphorylation sites. METHODS: To identify LepRb sequences that mediate Signal 2, we used CRISPR/Cas9 to generate five novel mouse lines containing COOH-terminal truncation mutants of LepRb. We analyzed the metabolic phenotype and measures of hypothalamic function for these mouse lines. RESULTS: We found that deletion of LepRb sequences between residues 921 and 960 dramatically worsens metabolic control and alters hypothalamic function relative to smaller truncations. We also found that deletion of the regions including residues 1013-1053 and 960-1013 each decreased obesity compared to deletions that included additional COOH-terminal residues. CONCLUSIONS: LepRb sequences between residues 921 and 960 mediate the STAT3 and LepRb phosphorylation-independent second signal that contributes to the control of energy balance and metabolism by leptin/LepRb. In addition to confirming the inhibitory role of the region (residues 961-1013) containing Tyr985, we also identified the region containing residues 1013-1053 (which contains no Tyr residues) as a second potential mediator of LepRb inhibition. Thus, the intracellular domain of LepRb mediates multiple Tyr-independent signals.


Assuntos
Receptores para Leptina/genética , Fator de Transcrição STAT3/metabolismo , Sequência de Aminoácidos , Animais , Sistemas CRISPR-Cas/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Obesidade/metabolismo , Receptores para Leptina/metabolismo , Fator de Transcrição STAT3/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA