RESUMO
Metalloporphyrins based on open-shell transition metals, such as Ni(II), exhibit typically fast excited-state relaxation. In this work, we shed light into the nonradiative relaxation mechanism in a nanographene-Ni(II) porphyrin conjugate. Variable temperature transient absorption and global fit analysis are combined to produce a picture of the relaxation pathways. At room temperature, photoexcitation of the lowest π-π* transition is followed by vibrational cooling in 1.6 ps, setting a short 20 ps temporal window wherein a small fraction of relaxed singlets radiatively decay to the ground state before intersystem crossing proceeds. Following intersystem crossing, triplets relax rapidly to the ground state (S0) in a few tens of picoseconds. By performing measurements at low temperature, we provide evidence for a competition between two terminal relaxation pathways from the lowest (metal-centered) triplet to the ground state: a slow ground state relaxation process proceeding in time scales beyond 1.6 ns and a faster pathway dictated by a sloped conical intersection, which is thermally accessible at room temperature from the triplet state. The overall triplet decay at a given temperature is dictated by the interplay of these two contributions. This observation bears significance in understanding the underlying fast relaxation processes in Ni-based molecules and related transition metal complexes, opening avenues for potential applications for energy harvesting and optoelectronics.
RESUMO
Precision graphene nanoribbons (GNRs) offer distinctive physicochemical properties that are highly dependent on their geometric topologies, thereby holding great potential for applications in carbon-based optoelectronics and spintronics. While the edge structure and width control has been a popular strategy for engineering the optoelectronic properties of GNRs, non-hexagonal-ring-containing GNRs remain underexplored due to synthetic challenges, despite offering an equally high potential for tailored properties. Herein, we report the synthesis of a wavy GNR (wGNR) embedding periodic eight-membered rings into its carbon skeleton, which is achieved by the A2B2-type Diels-Alder polymerization between dibenzocyclooctadiyne (6) and dicyclopenta[e,l]pyrene-5,11-dione derivative (8), followed by a selective Scholl reaction of the obtained ladder-type polymer (LTP) precursor. The obtained wGNR, with a length of up to 30 nm, is thoroughly characterized by solid-state NMR, FT-IR, Raman, and UV-Vis spectroscopy with the support of DFT calculations. The non-planar geometry of wGNR efficiently prevents the inter-ribbon π-π aggregation, leading to photoluminescence in solution. Consequently, the wGNR can function as an emissive layer for organic light-emitting electrochemical cells (OLECs), offering a proof-of-concept exploration in implementing luminescent GNRs into optoelectronic devices. The fast-responding OLECs employing wGNR will pave the way for advancements in OLEC technology and other optoelectronic devices.
RESUMO
It is well-established that strong electric fields (EFs) can align water dipoles, partially order the H-bond network of liquid water, and induce water splitting and proton transfers. To illuminate the fundamental behavior of water under external EFs, we present the first benchmark, to the best of our knowledge, of DFT calculations of the water dimer exposed to intense EFs against coupled cluster calculations. The analyses of the vibrational Stark effect and electron density provide a consistent picture of the intermolecular charge transfer effects driven along the H-bond by the increasing applied field at all theory levels. However, our findings prove that at extreme field regimes (â¼1-2 V/Å) DFT calculations significantly exaggerate by â¼10-30% the field-induced strengthening of the H-bond, both within the GGA, hybrid GGA, and hybrid meta-GGA approximations. Notably, a linear correlation emerges between the vibrational Stark effect on OH stretching and H-bond strengthening: a 1 kcal mol-1 increase corresponds to an 80 cm-1 red-shift in OH stretching frequency.
RESUMO
We present the inaugural synthesis of a chiral teropyrene achieved through a four-fold alkyne benzannulation catalyzed by InCl3, resulting in good yields. The product underwent thorough characterization using FT-Raman and FT-IR spectroscopies, demonstrating a close agreement with calculated spectra. X-ray crystallographic analysis unveiled a notable twist in the molecule's backbone, with an end-to-end twist angle of 51°, consistent with computational predictions. Experimentally determined enantiomeric inversion barriers revealed a significant energy barrier of 23â kcal/mol, facilitating the isolation of enantiomers for analysis by circular dichroism (CD) and circularly polarized luminescence (CPL) spectroscopies. These findings mark significant strides in the synthesis and characterization of chiral teropyrenes, offering insights into their structural and spectroscopic properties.
RESUMO
We propose the use of surface plasmon resonance (SPR) as a distinctive marker for real-time monitoring in reaction conditions of gold nanoparticles supported on α-Al2O3. The study leverages the SPR shape-and-size dependency to monitor metal nanoparticles in reaction conditions, evidencing an influence of both dimensions and agglomerations on the SPR peak position. Operando measurements, coupling UV-vis spectroscopy and catalytic testing, allows to follow the dynamics during nanoparticle formation (Au3+ to Au0 reduction) and during the reverse water gas shift reaction (CO2 + H2 â CO + H2O). The catalyst structure and stability in reaction conditions was further confirmed by operando X-ray spectroscopy and PXRD data. Overall, this approach enables the direct acquisition of information on the structure-activity relationship of metal-based supported catalysts under actual reaction conditions.
RESUMO
Heteroatom-doped peri-acenes (PAs) have recently attracted considerable attention considering their fascinating physical properties and chemical stability. However, the precise sole addition of boron atoms along the zigzag edges of PAs remains challenging, primarily due to the limited synthetic approach. Herein, we present a novel one-pot modular synthetic strategy toward unprecedented boron-doped PAs (B-PAs), including B-[4,2]PA (1 a-2), B-[4,3]PA (1 b-2) and B-[7,2]PA (1 c-3) derivatives, through efficient intramolecular electrophilic borylation. Their chemical structures are unequivocally confirmed with a combination of mass spectrometry, NMR, and single-crystal X-ray diffraction analysis. Notably, 1 b-2 exhibits an almost planar geometry, whereas 1 a-2 displays a distinctive bowl-like distortion. Furthermore, the optoelectronic properties of this series of B-PAs are thoroughly investigated by UV/Vis absorption and fluorescence spectroscopy combined with DFT calculation. Compared with their parent all-carbon analogs, the obtained B-PAs exhibit high stability, wide energy gaps, and high photoluminescence quantum yields of up to 84 %. This study reveals the exceptional ability of boron doping to finely tune the physicochemical properties of PAs, showcasing their potential applications in optoelectronics.
RESUMO
A theoretical approach based on Periodic Boundary Conditions (PBC) and a Linear Combination of Atomic Orbitals (LCAO) in the framework of the density functional theory (DFT) is used to investigate the molecular mechanism that rules the piezoelectric behavior of poly(vinylidene fluoride) (PVDF) polymer in the crystalline ß-phase. We present several computational tests highlighting the peculiar electrostatic potential energy landscape the polymer chains feel when they change their orientation by a rigid rotation in the lattice cell. We demonstrate that a rotation of the permanent dipole through chain rotation has a rather low energy cost and leads to a lattice relaxation. This justifies the macroscopic strain observed when the material is subjected to an electric field. Moreover, we investigate the effect on the molecular geometry of the expansion of the lattice parameters in the (a, b) plane, proving that the rotation of the dipole can take place spontaneously under mechanical deformation. By band deconvolution of the IR and Raman spectra of a PVDF film with a high content of ß-phase, we provide the experimental phonon wavenumbers and relative band intensities, which we compare against the predictions from DFT calculations. This analysis shows the reliability of the LCAO approach, as implemented in the CRYSTAL software, for calculating the vibrational spectra. Finally, we investigate how the IR/Raman spectra evolve as a function of inter-chain distance, moving towards the isolated chain limit and to the limit of a single crystal slab. The results show the relevance of the inter-molecular interactions on the vibrational dynamics and on the electro-optical features ruling the intensity pattern of the vibrational spectra.
RESUMO
SERS, a clinical practice where medical doctors can monitor the drug concentration in biological fluids, has been proposed as a viable approach to therapeutic drug monitoring (TDM) of the antiepileptic drug Perampanel. The adoption of an acidic environment during the SERS experiments was found to be effective in enhancing the spectroscopic signal. In this work, we combine SERS experiments, conducted with a custom spinning cell in controlled acidic conditions, with DFT calculations aimed at investigating the possible protonated forms of Perampanel. The DFT-simulated Raman spectra of protonated Perampanel accounts for most of the observed SERS signals, thus explaining the effective role of protonation of the analyte. Our results suggest protonation as a viable approach to fostering SERS of alkaline drugs.
Assuntos
Anticonvulsivantes , Nitrilas , Teoria da Densidade Funcional , PiridonasRESUMO
Surface-Enhanced Raman Scattering (SERS) can obtain the spectroscopic response of specific analytes. In controlled conditions, it is a powerful quantitative technique. However, often the sample and its SERS spectrum are complex. Pharmaceutical compounds in human biofluids with strong interfering signals from proteins and other biomolecules are a typical example. Among the techniques for drug dosage, SERS was reported to detect low drug concentrations, with analytical capability comparable to that of the assessed High-Performance Liquid Chromatography. Here, for the first time, we report the use of SERS for Therapeutic Drug Monitoring of the Anti-Epileptic Drug Perampanel (PER) in human saliva. We used inert substrates decorated with gold NPs deposited via Pulsed Laser Deposition as SERS sensors. We show that it is possible to detect PER in saliva via SERS after an optimized treatment of the saliva sample. Using a phase separation process, it is possible to extract all the diluted PER in saliva from the saliva phase to a chloroform phase. This allows us to detect PER in the saliva at initial concentrations of the order of 10-7 M, thus approaching those of clinical interest.
Assuntos
Nanopartículas Metálicas , Saliva , Humanos , Saliva/química , Nanopartículas Metálicas/química , Piridonas/análise , Análise Espectral Raman/métodos , Ouro/químicaRESUMO
Porphyrins, a type of heterocyclic aromatic compounds consisting of tetrapyrroles connected by four substituted methine groups, are appealing building blocks for solar energy applications. However, their photosensitization capability is limited by their large optical energy gap, which results in a mismatch in absorption toward efficient harvesting of the solar spectrum. Porphyrin π-extension by edge-fusing with nanographenes can be employed for narrowing their optical energy gap from 2.35 to 1.08 eV, enabling the development of porphyrin-based panchromatic dyes with an optimized energy onset for solar energy conversion in dye-sensitized solar fuel and solar cell configurations. By combining time-dependent density functional theory with fs transient absorption spectroscopy, it is found that the primary singlets, which are delocalized across the entire aromatic part, are transferred into metal centred triplets in only 1.2 ps; and subsequently, relax toward ligand-delocalized triplets. This observation implies that the decoration of the porphyrin moiety with nanographenes, while having a large impact on the absorption onset of the novel dye, promotes the formation of a ligand-centred lowest triplet state of large spatial extension, potentially interesting for boosting interactions with electron scavengers. These results reveal a design strategy for broadening the applicability of porphyrin-based dyes in optoelectronics.
RESUMO
The incorporation of nanopores into graphene nanostructures has been demonstrated as an efficient tool in tuning their band gaps and electronic structures. However, precisely embedding the uniform nanopores into graphene nanoribbons (GNRs) at the atomic level remains underdeveloped especially for in-solution synthesis due to the lack of efficient synthetic strategies. Herein we report the first case of solution-synthesized porous GNR (pGNR) with a fully conjugated backbone via the efficient Scholl reaction of tailor-made polyphenylene precursor (P1) bearing pre-installed hexagonal nanopores. The resultant pGNR features periodic subnanometer pores with a uniform diameter of 0.6â nm and an adjacent-pores-distance of 1.7â nm. To solidify our design strategy, two porous model compounds (1 a, 1 b) containing the same pore size as the shortcuts of pGNR, are successfully synthesized. The chemical structure and photophysical properties of pGNR are investigated by various spectroscopic analyses. Notably, the embedded periodic nanopores largely reduce the π-conjugation degree and alleviate the inter-ribbon π-π interactions, compared to the nonporous GNRs with similar widths, affording pGNR with a notably enlarged band gap and enhanced liquid-phase processability.
RESUMO
With the goal of substituting a hard metallic material for the soft Ultra High Molecular Weight Polyethylene (UHMWPE) presently used to make the bases of skis for alpine skiing, we used two non-thermodynamic equilibrium surface treatments with ultra-short (7-8 ps) laser pulses to modify the surface of square plates (50 × 50 mm2) made of austenitic stainless steel AISI 301H. By irradiating with linearly polarized pulses, we obtained Laser Induced Periodic Surface Structures (LIPSS). By laser machining, we produced a laser engraving on the surface. Both treatments produce a surface pattern parallel to one side of the sample. For both treatments, we measured with a dedicated snow tribometer the friction coefficient µ on compacted snow at different temperatures (-10 °C; -5 °C; -3 °C) for a gliding speed range between 1 and 6.1 ms-1. We compared the obtained µ values with those of untreated AISI 301H plates and of stone grinded, waxed UHMWPE plates. At the highest temperature (-3 °C), near the snow melting point, untreated AISI 301H shows the largest µ value (0.09), much higher than that of UHMWPE (0.04). Laser treatments on AISI 301H gave lower µ values approaching UHMWPE. We studied how the surface pattern disposition, with respect to the gliding direction of the sample on snow, affects the µ trend. For LIPSS with pattern, orientation perpendicular to the gliding direction on snow µ (0.05) is comparable with that of UHMWPE. We performed field tests on snow at high temperature (from -0.5 to 0 °C) using full-size skis equipped with bases made of the same materials used for the laboratory tests. We observed a moderate difference in performance between the untreated and the LIPSS treated bases; both performed worse than UHMWPE. Waxing improved the performance of all bases, especially LIPSS treated.
RESUMO
Phototautomerism in the excited states of free-base 5, 10, 15, 20-tetrakis(4-sulfonatophenyl) porphyrin (H2TPPS4-) has been investigated combining, for the first time, advanced Electron Paramagnetic Resonance (EPR) with fluorescence and Raman spectroscopy. Triplet EPR spectroscopy, performed in protic and deuterated solvents and in the presence of photoselection, confirms the occurrence of phototautomerization and additionally suggests the formation of the cis tautomer as a minor component. The zero-field splitting parameters and triplet sublevel populations indicate that the process is slow in the triplet state. The results obtained by EPR combined with photoselection and fluorescence anisotropy have been interpreted within a model which accounts for a fast trans-trans tautomerization promoted by a spin-vibronic coupling mechanism for intersystem crossing, with an even distribution of the two trans tautomers at liquid nitrogen temperatures for H2TPPS4-.
RESUMO
An innovative and versatile set-up for in situ and real time measures in an electrochemical cell is described. An original coupling between micro-Raman spectroscopy and atomic force microscopy enables one to collect data on opaque electrodes. This system allows for the correlation of topographic images with chemical maps during the charge exchange occurring in oxidation/reduction processes. The proposed set-up plays a crucial role when reactions, both reversible and non-reversible, are studied step by step during electrochemical reactions and/or when local chemical analysis is required.
RESUMO
A series of zigzag-edged polycyclic aromatic hydrocarbons (PAHs) (Z1-Z3) were synthesized from 2,12-dibromo-7,14-diphenyl-benzo[m]tetraphene (9) as a versatile building block. Their structures were unambiguously confirmed by laser desorption/ionization time-of-flight mass spectrometry, 1 H NMR, Raman, and Fourier-transformed infrared (FTIR) spectroscopies as well as scanning tunneling microscopy. The fingerprint vibrational modes were elucidated with theoretical support. The edge- and size-dependent optical properties were characterized by UV-Vis absorption and fluorescence spectroscopy and DFT calculations. Moreover, ultrafast transient absorption spectroscopy revealed distinct modulation of the photophysical properties upon π-extension from Z1 to Z2, the latter having a gulf edge.
RESUMO
We report the synthesis of a dibenzodinaphthocoronene (DBDNC) derivative as a novel nanographene with armchair, zigzag, and fjord edges, which was characterized by NMR and X-ray crystallography as well as infrared (IR) and Raman spectroscopies. Ultrafast transient absorption (TA) spectroscopy revealed the presence of stimulated emission signals at 655 nm and 710 nm with a relatively long lifetime, which resulted in dual amplified spontaneous emission (ASE) bands under ns-pulsed excitation, indicating the promise of DBNDC as a near-infrared (NIR) fluorophore for photonics. Our results provide new insight into the design of nanographene with intriguing optical properties by incorporating fjord edges.
RESUMO
Herein, we investigate the structure-property relationships in a new series of benzothiazole based unsymmetrical hexafluorocyclopentene dithienylethenes (DTEs) and compare the results with the known facts for symmetric diarylethenes (DAEs). We reveal high photocyclization efficiency resulting from a significant shift of ground state equilibrium to the antiparallel conformation and a barrierless excited state pathway to conical intersection, which remains unperturbed even in polar solvents for most of the prepared DTEs. Furthermore, we uncover that the rate of back thermal cycloreversion correlates clearly more with the central C-C bond-length in the transition state than with the central C-C bond-length in the ground state of the cyclic form. Finally, our detailed vibrational spectral analysis of studied DTEs points out significant changes in Raman and infrared spectra during photoswitching cycles which pave the way for a non-destructive readout of stored information.
RESUMO
The hydrogen bond network has a major role in determining the physical and chemical properties of water both in the solid and in the liquid state. In the bulk liquid phase, there is a coexistence of water molecules with different degrees of coordination and their relative amount changes according to the conditions (e.g., temperature, presence of solutes). Ice shows a larger amount of topologically under-coordinated water molecules at the surface as compared to the bulk. Snow is composed of many ice crystallites, and it differs from bulk ice because of the much larger specific surface area. The OH-stretching band is the most intense signal of the Raman spectrum of water, and it gives direct insight about the hydrogen bond network. In this work we compared the OH-stretching region of the Raman spectra of water, ice and snow acquired with excitations in the visible (532 nm) and in the UV-C range (250-200 nm) by exploiting the tunability of the synchrotron radiation. By moving towards the highest energy excitation we observed in liquid water a monotonic increase of the relative intensities of the peaks associated with weakly hydrogen-bonded water molecules. With visible excitation, the Raman spectrum of snow displays a larger contribution from weakly hydrogen-bonded water molecules at the surfaces when compared to the spectrum of bulk ice. By using excitation sources in the UV-C range, we observe a further enhancement of the contribution of the surfaces in the spectra of snow. By considering the reported changes of the water absorption coefficient in relation to the hydrogen bonding environment, we interpreted our results as a preferential pre-resonance excitation of weakly hydrogen-bonded water molecules induced by the UV-C sources.
RESUMO
Cyclic tetraaryl[5]cumulenes (1 a-f) have been synthesized and studied as a function of increasing ring strain. The magnitude of ring strain is approximated by the extent of bending of the cumulenic core as assessed by a combination of X-ray crystallographic analysis and DFT calculations. Trends are observed in 13 C NMR, UV-vis, and Raman spectra associated with ring strain, but the effects are small. In particular, the experimental HOMO-LUMO gap is not appreciably affected by bending of the [5]cumulene framework from ca. 174° (λmax =504â nm) in 1 a to ca. 178° (λmax =494â nm) in 1 f.
Assuntos
Teoria Quântica , Análise Espectral Raman , Modelos Moleculares , Polienos , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de FourierRESUMO
In snow, water coexists in solid, liquid and vapor states. The relative abundance of the three phases drives snow grain metamorphism and affects the physical properties of the snowpack. Knowledge of the content of the liquid phase in snow is critical to estimate the snowmelt runoff and to forecast the release of wet avalanches. Liquid water does not spread homogeneously through a snowpack because different snow layers have different permeabilities; therefore, it is important to track sudden changes in the amount of liquid water within a specific layer. We reproduced water percolation in the laboratory, and used Raman spectroscopy to detect the presence of the liquid phase in controlled snow samples. We performed experiments on both fine- and coarse-grained snow. The obtained snow spectra are well fitted by a linear combination of the spectra typical of liquid water and ice. We progressively charged snow with liquid water from dry snow up to soaked snow. As a result, we exploited continuous, qualitative monitoring of the evolution of the liquid water content as reflected by the fitting coefficient c.