Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
1.
Oncogene ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698266

RESUMO

c-Myc is a proto-oncoprotein that regulates various cellular processes and whose abnormal expression leads to tumorigenesis. c-Myc protein stability has been shown to be predominantly controlled by the ubiquitin ligase (E3) CRL1Fbxw7 in a manner dependent on glycogen synthase kinase 3 (GSK3)-mediated phosphorylation. Here we show that, in some types of cancer cells, c-Myc degradation is largely insensitive to the GSK3 inhibitor (GSK3i) CHIR99021, suggesting the existence of an E3 other than CRL1Fbxw7 for c-Myc degradation. Mass spectrometry identified CRL2KLHDC3 as such an E3. In GSK3i-insensitive cancer cells, combined depletion of Fbxw7 and KLHDC3 resulted in marked stabilization of c-Myc, suggestive of a cooperative action of Fbxw7 and KLHDC3. Furthermore, transplantation of such cells deficient in both Fbxw7 and KLHDC3 into immunodeficient mice gave rise to larger tumors compared with those formed by cells lacking only Fbxw7. GSK3i-insensitive pancreatic cancer cells expressed lower levels of SHISA2, a negative regulator of the Wnt signaling pathway, than did GSK3i-sensitive cells. KLHDC3 mRNA abundance was associated with prognosis in pancreatic cancer patients with a low level of SHISA2 gene expression. These results suggest that KLHDC3 cooperates with Fbxw7 to promote c-Myc degradation in a subset of cancer cells with low GSK3 activity.

2.
Exp Cell Res ; 432(1): 113783, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37726045

RESUMO

Cytokinesis is the final step of the cell division in which cellular components are separated into two daughter cells. This process is regulated through the phosphorylation of different classes of proteins by serine/threonine (Ser/Thr) kinases such as Aurora B and Polo-like kinase 1 (PLK1). Conversely, the role of phosphorylation at tyrosine residues during cytokinesis has not been studied in detail yet. In this study, we performed a phosphotyrosine proteomic analysis of cells undergoing monopolar cytokinesis synchronized by using the Eg5 inhibitor (+)-S-trityl-l-cysteine (STLC) and the CDK1 inhibitor RO-3306. Phosphotyrosine proteomics gave 362 tyrosine-phosphorylated peptides. Western blot analysis of proteins revealed tyrosine phosphorylation in mitogen-activated protein kinase 14 (MAPK14), vimentin, ephrin type-A receptor 2 (EphA2), and myelin protein zero-like protein 1 (MPZL1) during monopolar cytokinesis. Additionally, we demonstrated that EphA2, a protein with unknown function during cytokinesis, is involved in cytokinesis. EphA2 knockdown accelerated epithelial cell transforming 2 (Ect2) knockdown-induced multinucleation, suggesting that EphA2 plays a role in cytokinesis in a particular situation. The list also included many proteins previously reported to play roles during cytokinesis. These results evidence that the identified phosphopeptides facilitate the identification of novel tyrosine phosphorylation signaling involved in regulating cytokinesis.


Assuntos
Citocinese , Proteômica , Humanos , Citocinese/fisiologia , Fosfotirosina , Células HeLa , Fosforilação , Fosfoproteínas , Peptídeos e Proteínas de Sinalização Intracelular
3.
Cell Rep ; 42(8): 112884, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37516964

RESUMO

NUP98 and NUP214 form chimeric fusion proteins that assemble into phase-separated nuclear bodies containing CRM1, a nuclear export receptor. However, these nuclear bodies' function in controlling gene expression remains elusive. Here, we demonstrate that the nuclear bodies of NUP98::HOXA9 and SET::NUP214 promote the condensation of mixed lineage leukemia 1 (MLL1), a histone methyltransferase essential for the maintenance of HOX gene expression. These nuclear bodies are robustly associated with MLL1/CRM1 and co-localized on chromatin. Furthermore, whole-genome chromatin-conformation capture analysis reveals that NUP98::HOXA9 induces a drastic alteration in high-order genome structure at target regions concomitant with the generation of chromatin loops and/or rearrangement of topologically associating domains in a phase-separation-dependent manner. Collectively, these results show that the phase-separated nuclear bodies of nucleoporin fusion proteins can enhance the activation of target genes by promoting the condensation of MLL1/CRM1 and rearrangement of the 3D genome structure.


Assuntos
Leucemia , Complexo de Proteínas Formadoras de Poros Nucleares , Humanos , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Carioferinas/genética , Carioferinas/metabolismo , Proteínas de Homeodomínio/metabolismo , Leucemia/metabolismo , Cromatina , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Corpos Nucleares
4.
Mol Omics ; 19(8): 624-639, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37232035

RESUMO

Colorectal cancer (CRC), a common malignant tumour of the gastrointestinal tract, is a life-threatening cancer worldwide. Mutations in KRAS and BRAF, the major driver mutation subtypes in CRC, activate the RAS pathway, contribute to tumorigenesis in CRC and are being investigated as potential therapeutic targets. Despite recent advances in clinical trials targeting KRASG12C or RAS downstream signalling molecules for KRAS-mutant CRC, there is a lack of effective therapeutic interventions. Therefore, understanding the unique molecular characteristics of KRAS-mutant CRC is essential for identifying molecular targets and developing novel therapeutic interventions. We obtained in-depth proteomics and phosphoproteomics quantitative data for over 7900 proteins and 38 700 phosphorylation sites in cells from 35 CRC cell lines and performed informatic analyses, including proteomics-based coexpression analysis and correlation analysis between phosphoproteomics data and cancer dependency scores of the corresponding phosphoproteins. Our results revealed novel dysregulated protein-protein associations enriched specifically in KRAS-mutant cells. Our phosphoproteomics analysis revealed activation of EPHA2 kinase and downstream tight junction signalling in KRAS-mutant cells. Furthermore, the results implicate the phosphorylation site Y378 in the tight junction protein PARD3 as a cancer vulnerability in KRAS-mutant cells. Together, our large-scale phosphoproteomics and proteomics data across 35 steady-state CRC cell lines represent a valuable resource for understanding the molecular characteristics of oncogenic mutations. Our approach to predicting cancer dependency from phosphoproteomics data identified the EPHA2-PARD3 axis as a cancer vulnerability in KRAS-mutant CRC.


Assuntos
Neoplasias Colorretais , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/uso terapêutico , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/uso terapêutico , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/uso terapêutico , Transdução de Sinais
5.
Comput Struct Biotechnol J ; 21: 2172-2187, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37013003

RESUMO

Apatinib is known to be a highly selective vascular endothelial growth factor receptor 2 (VEGFR2) inhibitor with anti-angiogenic and anti-tumor properties. In a phase III study, the objective response rate to apatinib was low. It remains unclear why the effectivity of apatinib varies among patients and what type of patients are candidates for the treatment. In this study, we investigated the anti-tumor efficacy of apatinib against 13 gastric cancer cell lines and found that it differed depending on the cell line. Using integrated wet and dry approaches, we showed that apatinib was a multi-kinase inhibitor of c-Kit, RAF1, VEGFR1, VEGFR2, and VEGFR3, predominantly inhibiting c-Kit. Notably, KATO-III, which was the most apatinib-sensitive among the gastric cancer cell lines investigated, was the only cell line expressing c-Kit, RAF1, VEGFR1, and VEGFR3 but not VEGFR2. Furthermore, we identified SNW1 as a molecule affected by apatinib that plays an important role in cell survival. Finally, we identified the molecular network related to SNW1 that was affected by treatment with apatinib. These results suggest that the mechanism of action of apatinib in KATO-III cells is independent of VEGFR2 and that the differential efficacy of apatinib was due to differences in expression patterns of receptor tyrosine kinases. Furthermore, our results suggest that the differential efficacy of apatinib in gastric cell lines may be attributed to SNW1 phosphorylation levels at a steady state. These findings contribute to a deeper understanding of the mechanism of action of apatinib in gastric cancer cells.

6.
Cancer Med ; 12(9): 10755-10767, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37004157

RESUMO

INTRODUCTION: Lung adenocarcinoma progresses stepwise from atypical adenomatous hyperplasia to adenocarcinoma in situ (AIS), followed by minimally invasive adenocarcinoma (MIA), and then obvious invasive adenocarcinoma. In this study, we examined the protein expression profiles of early and epidermal growth factor receptor (EGFR) mutation-positive lung adenocarcinomas. METHODS: Fifteen cases of small and EGFR mutation-positive adenocarcinomas were collected, including AIS, MIA, and small invasive adenocarcinoma (SIA). We examined their protein expression profiles by tandem mass tag (TMT)-labeling liquid chromatography-mass spectrometry (LC-MS/MS) and compared the results between AIS and MIA versus SIA. The differentially expressed proteins were then verified by Western blot analysis and immunohistochemistry (IHC). The clinicopathological implications of the proteins were also examined by IHC. RESULTS: A total of 4220 proteins were identified by LC-MS/MS analysis. Pathway analysis of the differentially expressed proteins revealed that pathways related to interferon α/ß signaling, glutamate and glutamine metabolism, and gluconeogenesis were upregulated in SIA relative to AIS. Among the 13 differentially expressed proteins, cellular retinoic acid binding protein 2 (CRABP2), delta(24)-sterol reductase (DHCR24), and adenylate kinase 4 (AK4) were expressed significantly more strongly in SIA than in AIS. Patients with high expression of CRABP2, DHCR24, and AK4 showed a significantly poorer outcome than those with low expression. CONCLUSION: In comparison with AIS, SIA shows differences in several different protein expression pathways. Furthermore, CRABP2, DHCR24, and AK4 are useful IHC markers for diagnosis of lung adenocarcinoma invasiveness and may be associated with malignant progression of AIS.


Assuntos
Adenocarcinoma in Situ , Adenocarcinoma de Pulmão , Adenocarcinoma , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/patologia , Proteômica , Cromatografia Líquida , Espectrometria de Massas em Tandem , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma/patologia , Adenocarcinoma in Situ/genética , Adenocarcinoma in Situ/patologia , Receptores ErbB/genética , Mutação
7.
Anticancer Res ; 43(2): 569-580, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36697085

RESUMO

BACKGROUND/AIM: Itraconazole (ITZ), an antifungal agent, has been reported to have anti-tumor effects in patients with multiple cancer types. We investigated the involvement of tumor-associated macrophages (TAMs) in its tumor-agnostic mechanism. MATERIALS AND METHODS: M1 and M2 macrophages were established from human monocyte leukemia cell line (THP-1) and their phenotypes were determined morphologically. Cell membrane antigens and secreted proteins were evaluated by western blots and enzyme-linked immunosorbent assay, respectively. The proteomic profiling of cells was done by liquid chromatography with tandem mass spectrometry and analyzed. Viability of cervical cancer cells (CaSki) was evaluated after addition of the supernatant of M2 macrophages and during co-culture with M2 macrophages, with or without 10-5 M ITZ. RESULTS: Co-culture of M1 macrophages inhibited the proliferation of CaSki cells (p=0.012), while that of M2 macrophages promoted their proliferation (p<0.0001). After treatment of M2 macrophages with ITZ for 24 h, they changed into M1-like shape with decreased expression of cluster of differentiation 163 (CD163) and chemokine ligand 18 (CCL18). The M1-like shape was maintained for 7 weeks of ITZ treatment and reverted to original after ITZ removal. Proteomic analysis of ITZ treated-M2 macrophages also demonstrated M1-like signature including the elevated levels of tumor necrosis factor (TNF)-related proteins. After treatment with ITZ, both the supernatant of the M2 macrophages and the co-culture with M2 macrophages significantly inhibited the proliferation of CaSki cells (each, p<0.0001). CONCLUSION: ITZ repolarized M2 macrophages to M1 type and suppressed cervical cancer cell growth demonstrating TAM-mediated anti-cancer activity of ITZ.


Assuntos
Macrófagos Associados a Tumor , Neoplasias do Colo do Útero , Feminino , Humanos , Itraconazol/farmacologia , Neoplasias do Colo do Útero/patologia , Proteômica , Macrófagos/metabolismo , Linhagem Celular Tumoral , Diferenciação Celular
8.
Cancer Med ; 12(6): 7616-7626, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36394150

RESUMO

PURPOSE: The pathogenesis of cancers depends on the molecular background of each individual patient. Therefore, verifying as many biomarkers as possible and clarifying their relationships with each disease status would be very valuable. We performed a large-scale targeted proteomics analysis of plasma extracellular vesicles (EVs) that may affect tumor progression and/or therapeutic resistance. EXPERIMENTAL DESIGN: Plasma EVs from 59 were collected patients with colorectal cancer (CRC) and 59 healthy controls (HC) in cohort 1, and 150 patients with CRC in cohort 2 for the large-scale targeted proteomics analysis of 457 proteins as candidate CRC markers. The Mann-Whitney-Wilcoxon test and random forest model were applied in cohort 1 to select promising markers. Consensus clustering was applied to classify patients with CRC in cohort 2. The Kaplan-Meier method and Cox regression analysis were performed to identify potential molecular factors contributing to the overall survival (OS) of patients. RESULTS: In the analysis of cohort 1, 99 proteins were associated with CRC. The analysis of cohort 2 revealed two clusters showing significant differences in OS (p = 0.017). Twelve proteins, including alpha-1-acid glycoprotein 1 (ORM1), were suggested to be associated with the identified CRC subtypes, and ORM1 was shown to significantly contribute to OS, suggesting that ORM1 might be one of the factors closely related to the OS. CONCLUSIONS: The study identified two novel subtypes of CRC, which exhibit differences in OS, as well as important biomarker proteins that are closely related to the identified subtypes. Liquid biopsy assessment with targeted proteomics analysis was proposed to be crucial for predicting the CRC prognosis.


Assuntos
Neoplasias Colorretais , Vesículas Extracelulares , Humanos , Biomarcadores Tumorais/metabolismo , Proteômica/métodos , Prognóstico , Vesículas Extracelulares/metabolismo
9.
ACS Omega ; 7(45): 41472-41479, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36406491

RESUMO

Extracellular vesicles (EVs) are ubiquitously secreted by almost every cell type and are present in all body fluids. Blood-derived EVs can be used as a promising source for biomarker monitoring in disease. EV proteomics is currently being analyzed in clinical specimens. However, their EV proteomics preparation methods are limited in throughput for human subjects. Here, we introduced a novel automated EV isolation and sample preparation method using a magnetic particle processing robot for automated 96-well processing of magnetic particles for EV proteomics analysis that can be started with a low volume of multiple clinical samples. The automation of EV purification reduced the coefficient of variation of protein quantification from 3.5 to 2.2% compared with manual purification, enabling the quantification of 1120 proteins in 1 h of MS analysis. This automated proteomics EV sample preparation is attractive for processing large cohort samples for biomarker development, validation, and routine testing.

10.
Curr Biol ; 32(16): 3460-3476.e6, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35809567

RESUMO

Abnormal/cancerous cells within healthy epithelial tissues undergo apical extrusion to protect against carcinogenesis, although they acquire invasive capacity once carcinogenesis progresses. However, the molecular mechanisms by which cancer cells escape from apical extrusion and invade surrounding tissues remain elusive. In this study, we demonstrate a molecular mechanism for cell fate switching during epithelial cell competition. We found that during competition within epithelial cell layers, Src transformation promotes maturation of focal adhesions and degradation of extracellular matrix. Src-transformed cells underwent basal delamination by Src activation within sphingolipid/cholesterol-enriched membrane microdomains/lipid rafts, whereas they were apically extruded when Src was outside of lipid rafts. A comparative analysis of contrasting phenotypes revealed that activation of the Src-STAT3-MMP axis through lipid rafts was required for basal delamination. CUB-domain-containing protein 1 (CDCP1) was identified as an Src-activating scaffold and as a Met regulator in lipid rafts, and its overexpression induced basal delamination. In renal cancer models, CDCP1 promoted epithelial-mesenchymal transition-mediated invasive behavior by activating the Src-STAT3-MMP axis through Met activation. Overall, these results suggest that spatial activation of Src signaling in lipid rafts confers resistance to apical extrusion and invasive potential on epithelial cells to promote carcinogenesis.


Assuntos
Competição entre as Células , Microdomínios da Membrana , Antígenos de Neoplasias/metabolismo , Carcinogênese/metabolismo , Moléculas de Adesão Celular/metabolismo , Células Epiteliais/metabolismo , Humanos , Transdução de Sinais
11.
PLoS One ; 17(7): e0271020, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35797333

RESUMO

Extracellular vesicles (EVs) contain proteins, mRNAs, and microRNAs, and their cargos have emerged as novel diagnostic markers in various diseases. We aimed to discover novel and noninvasive biomarkers of liver fibrosis by proteomic analysis using serum EVs in patients with chronic hepatitis C. We performed shotgun proteomics using serum EVs isolated from 54 patients with histologically assessed liver fibrosis. Shotgun proteomics identified a total of 974 proteins, and 445 proteins were detected in more than half of the patients. Among them, a total of 9 proteins were identified as proteins that tended to increase or decrease with liver fibrosis with a significance of p<0.005 and that were different between F1-2 patients and F3-4 patients with a significance of p<0.01. Among the 9 proteins, targeted proteomics using serum EVs isolated from the sera of another 80 patients with histologically assessed liver fibrosis verified that serum amyloid P component (SAP) and pro-platelet basic protein (PPBP) levels in EVs significantly decreased with the progression of liver fibrosis and were significantly lower in F3-4 patients than in F1-2 patients. The diagnostic accuracies of SAP and PPBP in EVs for the liver fibrosis stage were comparable to those of type IV collagen 7S, hyaluronic acid, and the fibrosis-4 index (FIB-4 index). Moreover, serum SAP and PPBP levels correlated with the levels in EVs, and the ability of serum SAP and PPBP to diagnose liver fibrosis stage was also comparable to the abilities of type IV collagen 7S, hyaluronic acid, and the FIB-4 index. In conclusion, proteomic analysis of serum EVs identified SAP and PPBP as candidate biomarkers for predicting liver fibrosis in patients with chronic hepatitis C. In addition, SAP and PPBP levels in serum are strongly correlated with those in EVs and could represent markers of liver fibrosis.


Assuntos
Vesículas Extracelulares , Hepatite C Crônica , Componente Amiloide P Sérico , beta-Tromboglobulina , Biomarcadores , Colágeno Tipo IV/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Ácido Hialurônico/metabolismo , Fígado/patologia , Cirrose Hepática/patologia , Proteômica , Componente Amiloide P Sérico/metabolismo , beta-Tromboglobulina/metabolismo
12.
Br J Cancer ; 127(7): 1312-1323, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35794239

RESUMO

BACKGROUND: Urinary extracellular vesicles (uEVs) secreted from bladder cancer contain cancer-specific proteins that are potential diagnostic biomarkers. We identified and evaluated a uEV-based protein biomarker for bladder cancer diagnosis and analysed its functions. METHODS: Biomarker candidates, selected by shotgun proteomics, were validated using targeted proteomics of uEVs obtained from 49 patients with and 48 individuals without bladder cancer, including patients with non-malignant haematuria. We developed an enzyme-linked immunosorbent assay (ELISA) for quantifying the uEV protein biomarker without ultracentrifugation and evaluated urine samples from 36 patients with and 36 patients without bladder cancer. RESULTS: Thirteen membrane proteins were significantly upregulated in the uEVs from patients with bladder cancer in shotgun proteomics. Among them, eight proteins were validated by target proteomics, and Ephrin type-A receptor 2 (EphA2) was the only protein significantly upregulated in the uEVs of patients with bladder cancer, compared with that of patients with non-malignant haematuria. The EV-EphA2-CD9 ELISA demonstrated good diagnostic performance (sensitivity: 61.1%, specificity: 97.2%). We showed that EphA2 promotes proliferation, invasion and migration and EV-EphA2 promotes the invasion and migration of bladder cancer cells. CONCLUSIONS: We established EV-EphA2-CD9 ELISA for uEV-EphA2 detection for the non-invasive early clinical diagnosis of bladder cancer.


Assuntos
Vesículas Extracelulares , Neoplasias da Bexiga Urinária , Biomarcadores/metabolismo , Efrinas/metabolismo , Vesículas Extracelulares/metabolismo , Hematúria , Humanos , Receptor EphA2 , Neoplasias da Bexiga Urinária/diagnóstico , Neoplasias da Bexiga Urinária/metabolismo
13.
Life Sci Alliance ; 5(8)2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35508387

RESUMO

The sensitivity of phosphorylation site identification by mass spectrometry has improved markedly. However, the lack of kinase-substrate relationship (KSR) data hinders the improvement of the range and accuracy of kinase activity prediction. In this study, we aimed to develop a method for acquiring systematic KSR data on anaplastic lymphoma kinase (ALK) using mass spectrometry and to apply this method to the prediction of kinase activity. Thirty-seven ALK substrate candidates, including 34 phosphorylation sites not annotated in the PhosphoSitePlus database, were identified by integrated analysis of the phosphoproteome and crosslinking interactome of HEK 293 cells with doxycycline-induced ALK overexpression. Furthermore, KSRs of ALK were validated by an in vitro kinase assay. Finally, using phosphoproteomic data from ALK mutant cell lines and patient-derived cells treated with ALK inhibitors, we found that the prediction of ALK activity was improved when the KSRs identified in this study were used instead of the public KSR dataset. Our approach is applicable to other kinases, and future identification of KSRs will facilitate more accurate estimations of kinase activity and elucidation of phosphorylation signals.


Assuntos
Proteoma , Transdução de Sinais , Quinase do Linfoma Anaplásico/metabolismo , Células HEK293 , Humanos , Fosforilação , Proteoma/metabolismo
14.
iScience ; 25(4): 104012, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35340435

RESUMO

Extracellular vesicles (EVs) are ubiquitously secreted by almost all tissues and carry many cargoes, including proteins, RNAs, and lipids, which are related to various biological processes. EVs are shed from tissues into the blood and expected to be used as biomarkers for diseases. Here, we isolated EVs from EDTA plasma and serum of six healthy subjects by an affinity capture isolation method, and a total of 4,079 proteins were successfully identified by comprehensive EV proteomics. Our reliable and detailed catalog of the differential expression profiles of EV proteins in plasma and serum between healthy individuals could be useful as a reference for biomarker discovery. Furthermore, tissue-specific protein groups co-regulated between blood EVs from healthy individuals were identified. These EV proteins are expected to be used for more specific and sensitive enrichment of tissue-specific EVs and for screening and monitoring of disease without diagnostic imaging in patient blood in the future.

15.
Sci Rep ; 12(1): 4419, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35338158

RESUMO

Phosphoproteomic analysis expands our understanding of cancer biology. However, the feasibility of phosphoproteomic analysis using endoscopically collected tumor samples, especially with regards to dynamic changes upon drug treatment, remains unknown in stage IV gastric cancer. Here, we conducted a phosphoproteomic analysis using paired endoscopic biopsy specimens of pre- and post-treatment tumors (Ts) and non-tumor adjacent tissues (NATs) obtained from 4 HER2-positive gastric cancer patients who received trastuzumab-based treatment and from pre-treatment Ts and NATs of 4 HER2-negative gastric cancer patients. Our analysis identified 14,622 class 1 phosphosites with 12,749 quantified phosphosites and revealed molecular changes by HER2 positivity and treatment. An inhibitory signature of the ErbB signaling was observed in the post-treatment HER2-positive T group compared with the pre-treatment HER2-positive T group. Phosphoproteomic profiles obtained by a case-by-case review using paired pre- and post-treatment HER2-positive T could be utilized to discover predictive or resistant biomarkers. Furthermore, these data nominated therapeutic kinase targets which were exclusively activated in the patient unresponded to the treatment. The present study suggests that a phosphoproteomic analysis of endoscopic biopsy specimens provides information on dynamic molecular changes which can individually characterize biologic features upon drug treatment and identify therapeutic targets in stage IV gastric cancer.


Assuntos
Neoplasias Gástricas , Biomarcadores Tumorais/análise , Biópsia , Humanos , Receptor ErbB-2/análise , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Trastuzumab/uso terapêutico
16.
Int Immunol ; 34(6): 327-340, 2022 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-35294531

RESUMO

Sarcoidosis is a complex, polygenic, inflammatory granulomatous multi-organ disease of unknown cause. The granulomatous inflammation in sarcoidosis is driven by the interplay between T cells and macrophages. Extracellular vesicles (EVs) play important roles in intercellular communication. We subjected serum EVs, isolated by size exclusion chromatography, from seven patients with sarcoidosis and five control subjects to non-targeted proteomics analysis. Non-targeted, label-free proteomics analysis detected 2292 proteins in serum EVs; 42 proteins were up-regulated in patients with sarcoidosis relative to control subjects; and 324 proteins were down-regulated. The protein signature of EVs from patients with sarcoidosis reflected disease characteristics such as antigen presentation and immunological disease. Candidate biomarkers were further verified by targeted proteomics analysis (selected reaction monitoring) in 46 patients and 10 control subjects. Notably, CD14 and lipopolysaccharide-binding protein (LBP) were validated by targeted proteomics analysis. Up-regulation of these proteins was further confirmed by immunoblotting, and their expression was strongly increased in macrophages of lung granulomatous lesions. Consistent with these findings, CD14 levels were increased in lipopolysaccharide-stimulated macrophages during multinucleation, concomitant with increased levels of CD14 and LBP in EVs. The area under the curve values of CD14 and LBP were 0.81 and 0.84, respectively, and further increased to 0.98 in combination with angiotensin-converting enzyme and soluble interleukin-2 receptor. These findings suggest that CD14 and LBP in serum EVs, which are associated with granulomatous pathogenesis, can improve the diagnostic accuracy in patients with sarcoidosis.


Assuntos
Proteínas de Fase Aguda , Vesículas Extracelulares , Receptores de Lipopolissacarídeos , Sarcoidose , Proteínas de Fase Aguda/análise , Biomarcadores/análise , Vesículas Extracelulares/química , Humanos , Receptores de Lipopolissacarídeos/sangue , Glicoproteínas de Membrana/sangue , Proteômica/métodos , Sarcoidose/sangue , Sarcoidose/diagnóstico
17.
Mucosal Immunol ; 15(2): 289-300, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35013573

RESUMO

Dietary ω3 fatty acids have important health benefits and exert their potent bioactivity through conversion to lipid mediators. Here, we demonstrate that microbiota play an essential role in the body's use of dietary lipids for the control of inflammatory diseases. We found that amounts of 10-hydroxy-cis-12-cis-15-octadecadienoic acid (αHYA) and 10-oxo-cis-12-cis-15-octadecadienoic acid (αKetoA) increased in the feces and serum of specific-pathogen-free, but not germ-free, mice when they were maintained on a linseed oil diet, which is high in α-linolenic acid. Intake of αKetoA, but not αHYA, exerted anti-inflammatory properties through a peroxisome proliferator-activated receptor (PPAR)γ-dependent pathway and ameliorated hapten-induced contact hypersensitivity by inhibiting the development of inducible skin-associated lymphoid tissue through suppression of chemokine secretion from macrophages and inhibition of NF-κB activation in mice and cynomolgus macaques. Administering αKetoA also improved diabetic glucose intolerance by inhibiting adipose tissue inflammation and fibrosis through decreased macrophage infiltration in adipose tissues and altering macrophage M1/M2 polarization in mice fed a high-fat diet. These results collectively indicate that αKetoA is a novel postbiotic derived from α-linolenic acid, which controls macrophage-associated inflammatory diseases and may have potential for developing therapeutic drugs as well as probiotic food products.


Assuntos
Dieta Hiperlipídica , Macrófagos , Tecido Adiposo , Animais , Dieta Hiperlipídica/efeitos adversos , Lipídeos , Macaca fascicularis/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , PPAR gama/metabolismo
18.
EMBO J ; 40(18): e108345, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34337769

RESUMO

PIWI-interacting RNAs (piRNAs) are germline-specific small RNAs that form effector complexes with PIWI proteins (Piwi-piRNA complexes) and play critical roles for preserving genomic integrity by repressing transposable elements (TEs). Drosophila Piwi transcriptionally silences specific targets through heterochromatin formation and increases histone H3K9 methylation (H3K9me3) and histone H1 deposition at these loci, with nuclear RNA export factor variant Nxf2 serving as a co-factor. Using ChEP and DamID-seq, we now uncover a Piwi/Nxf2-dependent target association with nuclear lamins. Hi-C analysis of Piwi or Nxf2-depleted cells reveals decreased intra-TAD and increased inter-TAD interactions in regions harboring Piwi-piRNA target TEs. Using a forced tethering system, we analyze the functional effects of Piwi-piRNA/Nxf2-mediated recruitment of piRNA target regions to the nuclear periphery. Removal of active histone marks is followed by transcriptional silencing, chromatin conformational changes, and H3K9me3 and H1 association. Our data show that the Piwi-piRNA pathway can induce stepwise changes in nuclear architecture and chromatin state at target loci for transcriptional silencing.


Assuntos
Proteínas Argonautas/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica , Loci Gênicos , RNA Interferente Pequeno/metabolismo , Animais , Montagem e Desmontagem da Cromatina , Drosophila melanogaster , Heterocromatina/genética , Heterocromatina/metabolismo , Ligação Proteica , RNA Interferente Pequeno/genética
19.
Sci Transl Med ; 13(600)2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34193610

RESUMO

Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) are life-threatening mucocutaneous adverse drug reactions characterized by massive epidermal detachment. Cytotoxic T cells and associated effector molecules are known to drive SJS/TEN pathophysiology, but the contribution of innate immune responses is not well understood. We describe a mechanism by which neutrophils triggered inflammation during early phases of SJS/TEN. Skin-infiltrating CD8+ T cells produced lipocalin-2 in a drug-specific manner, which triggered the formation of neutrophil extracellular traps (NETs) in early lesional skin. Neutrophils undergoing NETosis released LL-37, an antimicrobial peptide, which induced formyl peptide receptor 1 (FPR1) expression by keratinocytes. FPR1 expression caused keratinocytes to be vulnerable to necroptosis that caused further release of LL-37 by necroptotic keratinocytes and induced FPR1 expression on surrounding keratinocytes, which likely amplified the necroptotic response. The NETs-necroptosis axis was not observed in less severe cutaneous adverse drug reactions, autoimmune diseases, or neutrophil-associated disorders, suggesting that this was a process specific to SJS/TEN. Initiation and progression of SJS/TEN keratinocyte necroptosis appear to involve a cascade of events mediated by innate and adaptive immune responses, and understanding these responses may contribute to the identification of diagnostic markers or therapeutic targets for these adverse drug reactions.


Assuntos
Síndrome de Stevens-Johnson , Linfócitos T CD8-Positivos , Humanos , Queratinócitos , Neutrófilos , Linfócitos T Citotóxicos
20.
Cancers (Basel) ; 13(13)2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34283052

RESUMO

The epidermal growth factor receptor is the only available tyrosine kinase molecular target for treating oral cancer. To improve the prognosis of tongue squamous cell carcinoma (TSCC) patients, a novel molecular target for tyrosine kinases is thus needed. We examined the expression of interleukin-2-inducible T-cell kinase (ITK) using immunohistochemistry, and the biological function of ITK was investigated using biochemical, phosphoproteomic, and metabolomic analyses. We found that ITK is overexpressed in TSCC patients with poor outcomes. The proliferation of oral cancer cell lines expressing ITK via transfection exhibited significant increases in three-dimensional culture assays and murine inoculation models with athymic male nude mice as compared with mock control cells. Suppressing the kinase activity using chemical inhibitors significantly reduced the increase in cell growth induced by ITK expression. Phosphoproteomic analyses revealed that ITK expression triggered phosphorylation of a novel tyrosine residue in trifunctional purine biosynthetic protein adenosine-3, an enzyme in the purine biosynthesis pathway. A significant increase in de novo biosynthesis of purines was observed in cells expressing ITK, which was abolished by the ITK inhibitor. ITK thus represents a potentially useful target for treating TSCC through modulation of purine biosynthesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA