Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cells ; 11(19)2022 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-36230948

RESUMO

Beneficial microbes with immunomodulatory capacities (immunobiotics) and their non-viable forms (postimmunobiotics) could be effectively utilized in formulations towards the prevention of respiratory viral infections. In this study, novel immunobiotic strains with the ability to increase antiviral immunity in porcine alveolar macrophages were selected from a library of Lactobacillus gasseri. Postimmunobiotics derived from the most remarkable strains were also evaluated in their capacity to modulate the immune response triggered by Toll-like receptor 3 (TLR3) in alveolar macrophages and to differentially regulate TLR3-mediated antiviral respiratory immunity in infant mice. We provide evidence that porcine alveolar macrophages (3D4/31 cells) are a useful in vitro tool for the screening of new antiviral immunobiotics and postimmunobiotics by assessing their ability to modulate the expression IFN-ß, IFN-λ1, RNAseL, Mx2, and IL-6, which can be used as prospective biomarkers. We also demonstrate that the postimmunobiotics derived from the Lactobacillus gasseri TMT36, TMT39 and TMT40 (HK36, HK39 or HK40) strains modulate the innate antiviral immune response of alveolar macrophages and reduce lung inflammatory damage triggered by TLR3 activation in vivo. Although our findings should be deepened and expanded, the results of the present work provide a scientific rationale for the use of nasally administered HK36, HK39 or HK40 to beneficially modulate TLR3-triggerd respiratory innate immune response.


Assuntos
Macrófagos Alveolares , Receptor 3 Toll-Like , Animais , Antivirais , Imunidade Inata , Interleucina-6 , Camundongos , Suínos
2.
Biosci Microbiota Food Health ; 41(3): 94-102, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35846832

RESUMO

On March 11, 2020, the World Health Organization declared a pandemic of coronavirus infectious disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and imposed the biggest public health challenge for our civilization, with unforeseen impacts in the subsequent years. Similar to other respiratory infections, COVID-19 is associated with significant changes in the composition of the upper respiratory tract microbiome. Studies have pointed to a significant reduction of diversity and richness of the respiratory microbiota in COVID-19 patients. Furthermore, it has been suggested that Prevotella, Staphylococcus, and Streptococcus are associated with severe COVID-19 cases, while Dolosigranulum and Corynebacterium are significantly more abundant in asymptomatic subjects or with mild disease. These results have stimulated the search for new microorganisms from the respiratory microbiota with probiotic properties that could alleviate symptoms and even help in the fight against COVID-19. To date, the potential positive effects of probiotics in the context of SARS-CoV-2 infection and COVID-19 pandemics have been extrapolated from studies carried out with other viral pathogens, such as influenza virus and respiratory syncytial virus. However, scientific evidence has started to emerge demonstrating the capacity of immunomodulatory bacteria to beneficially influence the resistance against SARS-CoV-2 infection. Here we review the scientific knowledge regarding the role of the respiratory microbiota in viral infections in general and in the infection caused by SARS-CoV-2 in particular. In addition, the scientific work that supports the use of immunomodulatory probiotic microorganisms as beneficial tools to reduce the severity of respiratory viral infections is also reviewed. In particular, our recent studies that evaluated the role of immunomodulatory Dolosigranulum pigrum strains in the context of SARS-CoV-2 infection are highlighted.

3.
Int Immunopharmacol ; 78: 106115, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31841753

RESUMO

The nasal priming with Lactobacillus rhamnosus CRL1505 modulates the respiratory antiviral innate immune response and improves protection against influenza virus (IFV) challenge in mice. However, the potential beneficial effect of the CRL1505 strain on the adaptive immune response triggered by IFV infection or vaccination was not evaluated before. In this work, we demonstrated that nasally administered L. rhamnosus CRL1505 is able to improve both the humoral and cellular adaptive immune responses induced by IFV infection or vaccination. Higher levels of IFV-specific IgA and IgG as well as IFN-γ were found in the serum and the respiratory tract of CRL1505-treated mice after IFV challenge. Lactobacilli treated mice also showed reduced concentrations of IL-17 and improved levels of IL-10 during IFV infection. The differential balance of inflammatory and regulatory cytokines induced by L. rhamnosus CRL1505 contributed to the protection against IFV by favoring an effective effector immune response without inducing inflammatory-mediated lung damage. The optimal immunomodulatory effect of the CRL1505 strain was achieved with viable bacteria. However, non-viable L. rhamnosus CRL1505 was also efficient in improving the adaptive immune responses generated by IFV challenges and therefore, emerged as an interesting alternative for vaccination of immunocompromised hosts. Similar to other immunomodulatory properties of lactobacilli, it was shown here that the adjuvant effect in the context of IFV vaccination was a strain dependent ability, since differences were found when L. rhamnosus CRL1505 and the immunomodulatory strain L. rhamnosus IBL027 were compared. This investigation represents a thorough exploration of the role of immunobiotic lactobacilli in improving humoral and cellular adaptive immune responses against IFV in the context of both infection and vaccination.


Assuntos
Imunidade Adaptativa , Vacinas Bacterianas/administração & dosagem , Vírus da Influenza A Subtipo H1N1/imunologia , Influenza Humana/prevenção & controle , Lacticaseibacillus rhamnosus/imunologia , Administração Intranasal , Animais , Vacinas Bacterianas/imunologia , Modelos Animais de Doenças , Cães , Humanos , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Influenza Humana/virologia , Células Madin Darby de Rim Canino , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA