Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(10): e2111537119, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35238643

RESUMO

Ischemia reperfusion injury represents a common pathological condition that is triggered by the release of endogenous ligands. While neutrophils are known to play a critical role in its pathogenesis, the tissue-specific spatiotemporal regulation of ischemia-reperfusion injury is not understood. Here, using oxidative lipidomics and intravital imaging of transplanted mouse lungs that are subjected to severe ischemia reperfusion injury, we discovered that necroptosis, a nonapoptotic form of cell death, triggers the recruitment of neutrophils. During the initial stages of inflammation, neutrophils traffic predominantly to subpleural vessels, where their aggregation is directed by chemoattractants produced by nonclassical monocytes that are spatially restricted in this vascular compartment. Subsequent neutrophilic disruption of capillaries resulting in vascular leakage is associated with impaired graft function. We found that TLR4 signaling in vascular endothelial cells and downstream NADPH oxidase 4 expression mediate the arrest of neutrophils, a step upstream of their extravasation. Neutrophil extracellular traps formed in injured lungs and their disruption with DNase prevented vascular leakage and ameliorated primary graft dysfunction. Thus, we have uncovered mechanisms that regulate the initial recruitment of neutrophils to injured lungs, which result in selective damage to subpleural pulmonary vessels and primary graft dysfunction. Our findings could lead to the development of new therapeutics that protect lungs from ischemia reperfusion injury.


Assuntos
Endotélio Vascular/metabolismo , Pulmão/metabolismo , Necroptose , Infiltração de Neutrófilos , Neutrófilos/metabolismo , Traumatismo por Reperfusão/metabolismo , Animais , Endotélio Vascular/lesões , Humanos , Pulmão/irrigação sanguínea , Camundongos , Camundongos Knockout , Traumatismo por Reperfusão/genética , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
2.
Langmuir ; 38(8): 2737-2745, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35171615

RESUMO

Emulsifier design is one of the key strategies in interfacial engineering for emulsion stability. In this study, cellulose nanocrystals (CNCs) were used as an interfacial stabilizer to improve the stability of coconut oil (CO)-in-water emulsions. A Pickering emulsion consisting of CO and water was optimized based on four parameters using the response surface methodology and the central composite design. The droplet coverage remained stable during the crystallization of the oil phase when the temperature was reduced below the melting temperature of CO. Fluorescent-labeled CNCs were used to monitor the partitioning of CNC at the O/W interface during the crystallization of CO. The Generation 6 polyamidoamine (G6 PAMAM) dendrimer covalently grafted on the surface of CNC was used as an intrinsic fluorescent dye. Since it displayed similar properties as the emulsifier, it could be used to monitor the CNC coverage on the oil droplets at various temperatures. The fluorescence micrographs showed that the emission of PAMAM CNCs at the O/W interface remained on both the liquid and solid CO droplets, confirming that oil crystallization did not affect the fluorescent CNC coverage on the oil droplets.


Assuntos
Celulose , Nanopartículas , Celulose/química , Emulsões/química , Nanopartículas/química , Transição de Fase , Água/química
3.
J Clin Invest ; 130(12): 6718-6727, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33196461

RESUMO

Tertiary lymphoid organs are aggregates of immune and stromal cells including high endothelial venules and lymphatic vessels that resemble secondary lymphoid organs and can be induced at nonlymphoid sites during inflammation. The function of lymphatic vessels within tertiary lymphoid organs remains poorly understood. During lung transplant tolerance, Foxp3+ cells accumulate in tertiary lymphoid organs that are induced within the pulmonary grafts and are critical for the local downregulation of alloimmune responses. Here, we showed that tolerant lung allografts could induce and maintain tolerance of heterotopic donor-matched hearts through pathways that were dependent on the continued presence of the transplanted lung. Using lung retransplantation, we showed that Foxp3+ cells egressed from tolerant lung allografts via lymphatics and were recruited into donor-matched heart allografts. Indeed, survival of the heart allografts was dependent on lymphatic drainage from the tolerant lung allograft to the periphery. Thus, our work indicates that cellular trafficking from tertiary lymphoid organs regulates immune responses in the periphery. We propose that these findings have important implications for a variety of disease processes that are associated with the induction of tertiary lymphoid organs.


Assuntos
Brônquios/imunologia , Transplante de Pulmão , Pulmão/imunologia , Tecido Linfoide/imunologia , Tolerância ao Transplante , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos CBA , Camundongos Transgênicos , Transplante Homólogo
4.
HCA Healthc J Med ; 1: 405-413, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-37426845

RESUMO

Background: The greater New Orleans area emerged as an early epicenter of the COVID-19 pandemic, with one of the highest infection and death rates per capita in the United States.1 The first case of COVID-19 in an obstetric patient at Tulane Lakeside Hospital occurred on March 22, 2020. Given increasing concern for asymptomatic carriers, the labor and delivery unit implemented universal testing of all patients and their support partners starting on April 1, 2020. Methods: A retrospective chart review of all obstetric encounters was performed to determine the incidence of COVID-19, characterize the natural history of COVID-19 and evaluate obstetric and neonatal outcomes. Results: Over a 5 week period of universal testing, there were 12/254 (4.72%) confirmed cases of COVID-19; 58% of COVID-positive patients were asymptomatic. The majority of the symptomatic COVID-19 patients had a mild course of the infection, similar to results from a previous study.2 As of completion of the study period, only 4 COVID-19-positive patients delivered; all of them had uncomplicated intra- and postpartum courses. There was no evidence of vertical transmission of COVID-19. Conclusion: These results confirm the asymptomatic carrier rate is high and support the case for universal testing in high prevalence cities. Ultimately, universal testing allows for a timely identification of disease, initiation of isolation and contact precautions and appropriate allocation of personal protective equipment (PPE).

5.
Am J Transplant ; 20(5): 1251-1261, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31721409

RESUMO

Long-term survival after lung transplantation remains profoundly limited by graft rejection. Recent work has shown that bronchus-associated lymphoid tissue (BALT), characterized by the development of peripheral nodal addressin (PNAd)-expressing high endothelial venules and enriched in B and Foxp3+ T cells, is important for the maintenance of allograft tolerance. Mechanisms underlying BALT induction in tolerant pulmonary allografts, however, remain poorly understood. Here, we show that the development of PNAd-expressing high endothelial venules within intragraft lymphoid follicles and the recruitment of B cells, but not Foxp3+ cells depends on IL-22. We identify graft-infiltrating gamma-delta (γδ) T cells and Type 3 innate lymphoid cells (ILC3s) as important producers of IL-22. Reconstitution of IL-22 at late time points through retransplantation into wildtype hosts mediates B cell recruitment into lymphoid follicles within the allograft, resulting in a significant increase in their size, but does not induce PNAd expression. Our work has identified cellular and molecular requirements for the induction of BALT in pulmonary allografts during tolerance induction and may provide a platform for the development of new therapies for lung transplant patients.


Assuntos
Imunidade Inata , Tecido Linfoide , Aloenxertos , Brônquios , Rejeição de Enxerto/etiologia , Humanos , Interleucinas , Pulmão , Linfócitos , Interleucina 22
6.
J Clin Invest ; 129(2): 556-568, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30561386

RESUMO

Antibody-mediated rejection (AMR) is a principal cause of acute and chronic failure of lung allografts. However, mechanisms mediating this oftentimes fatal complication are poorly understood. Here, we show that Foxp3+ T cells formed aggregates in rejection-free human lung grafts and accumulated within induced bronchus-associated lymphoid tissue (BALT) of tolerant mouse lungs. Using a retransplantation model, we show that selective depletion of graft-resident Foxp3+ T lymphocytes resulted in the generation of donor-specific antibodies (DSA) and AMR, which was associated with complement deposition and destruction of airway epithelium. AMR was dependent on graft infiltration by B and T cells. Depletion of graft-resident Foxp3+ T lymphocytes resulted in prolonged interactions between B and CD4+ T cells within transplanted lungs, which was dependent on CXCR5-CXCL13. Blockade of CXCL13 as well as inhibition of the CD40 ligand and the ICOS ligand suppressed DSA production and prevented AMR. Thus, we have shown that regulatory Foxp3+ T cells residing within BALT of tolerant pulmonary allografts function to suppress B cell activation, a finding that challenges the prevailing view that regulation of humoral responses occurs peripherally. As pulmonary AMR is largely refractory to current immunosuppression, our findings provide a platform for developing therapies that target local immune responses.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos , Linfócitos B , Brônquios , Rejeição de Enxerto , Transplante de Pulmão , Ativação Linfocitária , Animais , Linfócitos B/imunologia , Linfócitos B/patologia , Brônquios/imunologia , Brônquios/patologia , Ligante de CD40/genética , Ligante de CD40/imunologia , Quimiocina CXCL13/genética , Quimiocina CXCL13/imunologia , Rejeição de Enxerto/genética , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Camundongos Nus , Receptores CXCR5/genética , Receptores CXCR5/imunologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/patologia
7.
Biotechnol J ; 12(10)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28296355

RESUMO

Muconic acid is a valuable platform chemical with potential applications in the production of polymers such as nylon and polyethylene terephthalate (PET). The conjugate base, muconate, has been previously biosynthesized in the bacterial host Escherichia coli. Likewise, previous significant pathway engineering lead to the first reported instance of rationally engineered production of muconic acid in the yeast Saccharomyces cerevisiae. To further increase muconic acid production in this host, a combined adaptive laboratory evolution (ALE) strategy and rational metabolic engineering is employed. To this end, a biosensor module that responds to the endogenous aromatic amino acid (AAA) as a surrogate for pathway flux is adapted. Following two rounds of ALE coupled with an anti-metabolite feeding strategy, the strains with improved AAA pathway flux is isolated. Next, it is demonstrated that this increased flux can be redirected into the composite muconic acid pathway with a threefold increase in the total titer of the composite pathway compared to our previously engineered strain. Finally, a truncation of the penta-functional ARO1 protein is complemented and overexpress an endogenous aromatic decarboxylase to establish a final strain capable of producing 0.5 g L-1 muconic acid in shake flasks and 2.1 g L-1 in a fed-batch bioreactor with a yield of 12.9 mg muconic acid/g glucose at the rate of 9.0 mg h-1 . This value represents the highest titer of muconic acid reported to date in S. cerevisiae, in addition to the highest reported titer of a shikimate pathway derivative in this host.


Assuntos
Técnicas Biossensoriais/instrumentação , Saccharomyces cerevisiae/metabolismo , Ácido Sórbico/análogos & derivados , Aminoácidos Aromáticos/metabolismo , Reatores Biológicos , Escherichia coli/metabolismo , Metanossulfonato de Etila , Fermentação , Engenharia Metabólica/métodos , Mutagênese , Proteínas de Saccharomyces cerevisiae , Ácido Chiquímico/metabolismo , Ácido Sórbico/análise , Ácido Sórbico/metabolismo , Tirosina/metabolismo
8.
Biotechnol J ; 11(7): 866-76, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27152757

RESUMO

Gene expression requires the coordination of trans-acting factors and cis-DNA elements to initiate transcription. Here we present a coordinated approach that combines cis-acting element engineering with mutant trans-acting factors to engineer yeast promoters. Specifically, we first construct a hybrid promoter based on the ARO9 upstream region that exhibits high constitutive and inducible expression with respect to exogenous tryptophan. Next, we perform protein engineering to identify a mutant Aro80p that affords both high constitutive expression while retaining inducible traits. We then use this mutant trans-acting factor to drive expression and generate ultra-strong promoters with transcriptional output roughly 2 fold higher than TDH3 (GPD), one of the strongest promoters to-date. Finally, we used this element to construct a modular expression system capable of staged outputs resulting in a system with nearly 6-fold, 12-fold and 15-fold expression relative to the off-state. This work further highlights the potential of using endogenous transcription factors (including mutant factors) along with hybrid promoters to expand the yeast synthetic biology toolbox.


Assuntos
Engenharia Genética/métodos , Regiões Promotoras Genéticas , Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Regulação Fúngica da Expressão Gênica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Biologia Sintética/métodos , Transativadores , Transaminases/genética
9.
J Trop Pediatr ; 62(5): 352-60, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27037248

RESUMO

OBJECTIVES: We investigated mortality and morbidity of patients admitted to a pediatric intensive care unit (PICU) with paramyxovirus infection. METHODS: A retrospective study between October 2002 and March 2015 of children with a laboratory-confirmed paramyxovirus infection was included. RESULTS: In all, 98 (5%) PICU admissions were tested positive to have paramyxovirus infection (respiratory syncytial virus = 66, parainfluenza = 27 and metapneumovirus = 5). The majority of admissions were young patients (median age 1.05 years). Bacteremia and bacterial isolation in any site were present in 10% and 28%, respectively; 41% were mechanically ventilated, and 20% received inotropes. The three respiratory viruses caused similar mortality and morbidity in the PICU. Fatality (seven patients) was associated with malignancy, positive bacterial culture in blood, the use of mechanical ventilation, inotrope use, lower blood white cell count and higher C reactive protein (p = 0.02-0.0005). Backward binary logistic regression for these variables showed bacteremia (odds ratio [OR]: 31.7; 95% CI: 2.3-427.8; p = 0.009), malignancy (OR: 45.5; 95% CI: 1.4-1467.7; p = 0.031) and use of inotropes (OR: 15.0; 95% CI: 1.1-196.1; p = 0.039) were independently associated with non-survival. March and July appeared to be the two peak months for PICU hospitalizations with paramyxovirus infection. CONCLUSIONS: Infections with paramyxoviruses account for 5% of PICU admissions and significant morbidity. Patient with premorbid history of malignancy and co-morbidity of bacteremia are associated with non-survival. March and July appeared to be the two peak months for PICU admissions with paramyxoviruses.


Assuntos
Unidades de Terapia Intensiva Pediátrica/estatística & dados numéricos , Infecções por Paramyxoviridae/mortalidade , Paramyxoviridae/isolamento & purificação , Infecções por Vírus Respiratório Sincicial/epidemiologia , Criança , Pré-Escolar , Comorbidade , Feminino , Hong Kong/epidemiologia , Humanos , Lactente , Tempo de Internação , Masculino , Morbidade , Infecções por Paramyxoviridae/diagnóstico , Infecções por Vírus Respiratório Sincicial/diagnóstico , Vírus Sinciciais Respiratórios/isolamento & purificação , Estudos Retrospectivos , Estações do Ano
10.
Proc Natl Acad Sci U S A ; 111(1): 131-6, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24344268

RESUMO

Utilization of exogenous sugars found in lignocellulosic biomass hydrolysates, such as xylose, must be improved before yeast can serve as an efficient biofuel and biochemical production platform. In particular, the first step in this process, the molecular transport of xylose into the cell, can serve as a significant flux bottleneck and is highly inhibited by other sugars. Here we demonstrate that sugar transport preference and kinetics can be rewired through the programming of a sequence motif of the general form G-G/F-XXX-G found in the first transmembrane span. By evaluating 46 different heterologously expressed transporters, we find that this motif is conserved among functional transporters and highly enriched in transporters that confer growth on xylose. Through saturation mutagenesis and subsequent rational mutagenesis, four transporter mutants unable to confer growth on glucose but able to sustain growth on xylose were engineered. Specifically, Candida intermedia gxs1 Phe(38)Ile(39)Met(40), Scheffersomyces stipitis rgt2 Phe(38) and Met(40), and Saccharomyces cerevisiae hxt7 Ile(39)Met(40)Met(340) all exhibit this phenotype. In these cases, primary hexose transporters were rewired into xylose transporters. These xylose transporters nevertheless remained inhibited by glucose. Furthermore, in the course of identifying this motif, novel wild-type transporters with superior monosaccharide growth profiles were discovered, namely S. stipitis RGT2 and Debaryomyces hansenii 2D01474. These findings build toward the engineering of efficient pentose utilization in yeast and provide a blueprint for reprogramming transporter properties.


Assuntos
Candida/metabolismo , Proteínas Fúngicas/química , Proteínas de Transporte de Monossacarídeos/química , Saccharomyces cerevisiae/metabolismo , Motivos de Aminoácidos , Biocombustíveis , Transporte Biológico , Biomassa , Clonagem Molecular , Escherichia coli/metabolismo , Fermentação , Regulação Fúngica da Expressão Gênica , Glucose/química , Monossacarídeos/química , Mutação , Fenótipo , Fatores de Tempo , Xilose/química
11.
J Neurosci Methods ; 204(1): 19-27, 2012 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-22027490

RESUMO

BACKGROUND: In order to evaluate nerve regeneration in clinically relevant hindlimb surgical paradigms not feasible in fluorescent mice models, we developed a rat that expresses green fluorescent protein (GFP) in neural tissue. METHODS: Transgenic Sprague-Dawley rat lines were created using pronuclear injection of a transgene expressing GFP under the control of the thy1 gene. Nerves were imaged under fluorescence microscopy and muscles were imaged with confocal microscopy to determine GFP expression following sciatic nerve crush, transection and direct suturing, and transection followed by repair with a nerve isograft from nonexpressing littermates. RESULTS: In each surgical paradigm, fluorescence microscopy demonstrated the loss and reappearance of fluorescence with regeneration of axons following injury. Nerve regeneration was confirmed with imaging of Wallerian degeneration followed by reinnervation of extensor digitorum longus (EDL) muscle motor endplates using confocal microscopy. CONCLUSION: The generation of a novel transgenic rat model expressing GFP in neural tissue allows in vivo imaging of nerve regeneration and visualization of motor endplate reinnervation. This rat provides a new model for studying peripheral nerve injury and regeneration over surgically relevant distances.


Assuntos
Modelos Animais de Doenças , Proteínas de Fluorescência Verde/metabolismo , Regeneração Nervosa/fisiologia , Traumatismos dos Nervos Periféricos/patologia , Traumatismos dos Nervos Periféricos/fisiopatologia , Neuropatia Ciática/patologia , Neuropatia Ciática/fisiopatologia , Animais , Membro Posterior/lesões , Membro Posterior/inervação , Membro Posterior/patologia , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos
12.
Exp Neurol ; 225(2): 310-9, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20633557

RESUMO

Host Schwann cell (SC) migration into nerve allografts is the limiting factor in the duration of immunosuppression following peripheral nerve allotransplantation, and may be affected by different immunosuppressive regimens. Our objective was to compare SC migration patterns between clinical and experimental immunosuppression regimens both over time and at the harvest endpoint. Eighty mice that express GFP under the control of the Schwann cell specific S100 promoter were engrafted with allogeneic, nonfluorescent sciatic nerve grafts. Mice received immunosuppression with either tacrolimus (FK506), or experimental T-cell triple costimulation blockade (CSB), consisting of CTLA4-immunoglobulin fusion protein, anti-CD40 monoclonal antibody, and anti-inducible costimulator monoclonal antibody. Migration of GFP-expressing host SCs into wild-type allografts was assessed in vivo every 3 weeks until 15 weeks postoperatively, and explanted allografts were evaluated for immunohistochemical staining patterns to differentiate graft from host SCs. Immunosuppression with tacrolimus exhibited a plateau of SC migration, characterized by significant early migration (< 3 weeks) followed by a constant level of host SCs in the graft (15 weeks). At the endpoint, graft fluorescence was decreased relative to surrounding host nerve, and donor SCs persisted within the graft. CSB-treated mice displayed gradually increasing migration of host SCs into the graft, without the plateau noted in tacrolimus-treated mice, and also maintained a population of donor SCs at the 15-week endpoint. SC migration patterns are affected by immunosuppressant choice, particularly in the immediate postoperative period, and the use of a single treatment of CSB may allow for gradual population of nerve allografts with host SCs.


Assuntos
Movimento Celular/fisiologia , Regeneração Nervosa/fisiologia , Células de Schwann/fisiologia , Nervo Isquiático/transplante , Análise de Variância , Animais , Anticorpos Monoclonais/farmacologia , Western Blotting , Antígenos CD40/imunologia , Caspase 3/imunologia , Caspase 3/metabolismo , Movimento Celular/imunologia , Imuno-Histoquímica , Terapia de Imunossupressão/métodos , Imunossupressores/farmacologia , Camundongos , Camundongos Transgênicos , Regeneração Nervosa/imunologia , Proteínas S100/imunologia , Proteínas S100/metabolismo , Células de Schwann/imunologia , Nervo Isquiático/imunologia , Nervo Isquiático/fisiologia , Tacrolimo/farmacologia
13.
Arch Facial Plast Surg ; 12(1): 40-7, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20083740

RESUMO

OBJECTIVE: To determine the Sunderland classification of a bipolar electrocautery injury. METHODS: Twenty-two rats received crush (a reproducible Sunderland second-degree injury) or bipolar electrocautery injury and were evaluated for functional, histomorphometric, and immunohistochemical recovery at 21 or 42 days. Animal experiments were performed between July 3 and December 12, 2007. Axonal regeneration and end plate reinnervation were evaluated in double transgenic cyan fluorescent protein-conjugated Thy1 and green fluorescent protein-conjugated S100 mice. RESULTS: Compared with crush injury, bipolar electrocautery injury caused greater disruption of myelin and neurofilament architecture at the injury site and decreased nerve fiber counts and percentage of neural tissue distal to the injury (P =.007). Complete functional recovery was seen after crush but not bipolar electrocautery injury. Serial live imaging demonstrated axonal regeneration at week 1 after crush and at week 3 after bipolar electrocautery injury. Qualitative assessment of motor end plate reinnervation at 42 days demonstrated complete neuromuscular end plate reinnervation in the crush group and only limited reinnervation in the bipolar electrocautery group. CONCLUSION: Bipolar electrocautery injury in a rodent model resulted in a Sunderland third-degree injury, characterized by gradual, incomplete recovery without intervention.


Assuntos
Eletrocoagulação/métodos , Traumatismos dos Nervos Periféricos , Nervos Periféricos/cirurgia , Procedimentos de Cirurgia Plástica/métodos , Animais , Masculino , Camundongos , Nervos Periféricos/patologia , Ratos , Ratos Endogâmicos Lew , Índice de Gravidade de Doença
14.
J Neurosurg ; 113(1): 102-9, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19943736

RESUMO

OBJECT: Glial cell line-derived neurotrophic factor (GDNF) has potent survival effects on central and peripheral nerve populations. The authors examined the differential effects of GDNF following either a sciatic nerve crush injury in mice that overexpressed GDNF in the central or peripheral nervous systems (glial fibrillary acidic protein [GFAP]-GDNF) or in the muscle target (Myo-GDNF). METHODS: Adult mice (GFAP-GDNF, Myo-GDNF, or wild-type [WT] animals) underwent sciatic nerve crush and were evaluated using histomorphometry and muscle force and power testing. Uninjured WT animals served as controls. RESULTS: In the sciatic nerve crush, the Myo-GDNF mice demonstrated a higher number of nerve fibers, fiber density, and nerve percentage (p < 0.05) at 2 weeks. The early regenerative response did not result in superlative functional recovery. At 3 weeks, GFAP-GDNF animals exhibit fewer nerve fibers, decreased fiber width, and decreased nerve percentage compared with WT and Myo-GDNF mice (p < 0.05). By 6 weeks, there were no significant differences between groups. CONCLUSIONS: Peripheral delivery of GDNF resulted in earlier regeneration following sciatic nerve crush injuries than that with central GDNF delivery. Treatment with neurotrophic factors such as GDNF may offer new possibilities for the treatment of peripheral nerve injury.


Assuntos
Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Placa Motora/química , Regeneração Nervosa/efeitos dos fármacos , Nervo Isquiático/química , Animais , Contração Isométrica/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Compressão Nervosa
15.
Muscle Nerve ; 39(6): 787-99, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19291791

RESUMO

Autografting is the gold standard in the repair of peripheral nerve injuries that are not amenable to end-to-end coaptation. However, because autografts result in donor-site defects and are a limited resource, an effective substitute would be valuable. In a rat model, we compared isografts with Integra NeuraGen (NG) nerve guides, which are a commercially available type I collagen conduit, with processed rat allografts comparable to AxoGen's Avance human decellularized allograft product. In a 14-mm sciatic nerve gap model, isograft was superior to processed allograft, which was in turn superior to NG conduit at 6 weeks postoperatively (P < 0.05 for number of myelinated fibers both at midgraft and distal to the graft). At 12 weeks, these differences were no longer apparent. In a 28-mm graft model, isografts again performed better than processed allografts at both 6 and 22 weeks; regeneration through the NG conduit was often insufficient for analysis in this long graft model. Functional tests confirmed the superiority of isografts, although processed allografts permitted successful reinnervation of distal targets not seen in the NG conduit groups. Processed allografts were inherently non-immunogenic and maintained some internal laminin structure. We conclude that, particularly in a long gap model, nerve graft alternatives fail to confer the regenerative advantages of an isograft. However, AxoGen processed allografts are superior to a currently available conduit-style nerve guide, the Integra NeuraGen. They provide an alternative for reconstruction of short nerve gaps where a conduit might otherwise be used.


Assuntos
Implantes Absorvíveis , Colágeno Tipo I/farmacologia , Procedimentos Neurocirúrgicos/métodos , Nervos Periféricos/cirurgia , Nervos Periféricos/transplante , Transplante Homólogo/métodos , Animais , Colágeno Tipo I/uso terapêutico , Modelos Animais de Doenças , Cones de Crescimento/fisiologia , Laminina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Fibras Nervosas Mielinizadas/metabolismo , Fibras Nervosas Mielinizadas/ultraestrutura , Fibras Nervosas Amielínicas/metabolismo , Fibras Nervosas Amielínicas/ultraestrutura , Regeneração Nervosa/fisiologia , Traumatismos dos Nervos Periféricos , Ratos , Ratos Endogâmicos Lew , Recuperação de Função Fisiológica/fisiologia , Neuropatia Ciática/cirurgia , Tolerância ao Transplante/fisiologia , Resultado do Tratamento
16.
Exp Neurol ; 212(2): 324-36, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18514192

RESUMO

We used peripheral nerve allografts, already employed clinically to reconstruct devastating peripheral nerve injuries, to study Schwann cell (SC) plasticity in adult mice. By modulating the allograft treatment modality we were able to study migratory, denervated, rejecting, and reinnervated phenotypes in transgenic mice whose SCs expressed GFP under regulatory elements of either the S100b (S100-GFP) or nestin (Nestin-GFP) promoters. Well-differentiated SCs strongly expressed S100-GFP, while Nestin-GFP expression was stimulated by denervation, and in some cases, axons were constitutively labeled with CFP to enable in vivo imaging. Serial imaging of these mice demonstrated that untreated allografts were rejected within 20 days. Cold preserved (CP) allografts required an initial phase of SC migration that preceded axonal regeneration thus delaying myelination and maturation of the SC phenotype. Mice immunosuppressed with FK506 demonstrated mild subacute rejection, but the most robust regeneration of myelinated and unmyelinated axons and motor endplate reinnervation. While characterized by fewer regenerating axons, mice treated with the co-stimulatory blockade (CSB) agents anti-CD40L mAb and CTLAIg-4 demonstrated virtually no graft rejection during the 28 day experiment, and had significant increases in myelination, connexin-32 expression, and Akt phosphorylation compared with any other group. These results indicate that even with SC rejection, nerve regeneration can occur to some degree, particularly with FK506 treatment. However, we found that co-stimulatory blockade facilitate optimal myelin formation and maturation of SCs as indicated by protein expression of myelin basic protein (MBP), connexin-32 and phospho-Akt.


Assuntos
Regeneração Nervosa/fisiologia , Fenótipo , Células de Schwann/fisiologia , Neuropatia Ciática/cirurgia , Transplante Homólogo/fisiologia , Animais , Ligante de CD40/metabolismo , Conexinas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Rejeição de Enxerto/prevenção & controle , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Proteínas de Filamentos Intermediários/genética , Proteínas de Filamentos Intermediários/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão/métodos , Atividade Motora , Proteína Básica da Mielina/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Nestina , Proteínas S100/genética , Proteínas S100/metabolismo , Células de Schwann/metabolismo , Células de Schwann/ultraestrutura , Neuropatia Ciática/metabolismo , Neuropatia Ciática/patologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Tacrolimo/farmacologia , Fatores de Tempo , Proteína beta-1 de Junções Comunicantes
17.
Exp Neurol ; 211(2): 539-50, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18433746

RESUMO

End-to-side (ETS) nerve repair remains an area of intense scrutiny for peripheral nerve surgeon-scientists. In this technique, the transected end of an injured nerve, representing the "recipient" is sutured to the side of an uninjured "donor" nerve. Some works suggest that the recipient limb is repopulated with regenerating collateral axonal sprouts from the donor nerve that go on to form functional synapses. Significant, unresolved questions include whether the donor nerve needs to be injured to facilitate regeneration, and whether a single donor neuron is capable of projecting additional axons capable of differentially innervating disparate targets. We serially imaged living transgenic mice (n=66) expressing spectral variants of GFP in various neuronal subsets after undergoing previously described atraumatic, compressive, or epineurotomy forms of ETS repair (n=22 per group). To evaluate the source, and target innervation of these regenerating axons, nerve morphometry and retrograde labeling were further supplemented by confocal microscopy as well as Western blot analysis. Either compression or epineurotomy with inevitable axotomy were required to facilitate axonal regeneration into the recipient limb. Progressively more injurious models were associated with improved recipient nerve reinnervation (epineurotomy: 184+/-57.6 myelinated axons; compression: 78.9+/-13.8; atraumatic: 0), increased Schwann cell proliferation (epineurotomy: 72.2% increase; compression: 39% increase) and cAMP response-element binding protein expression at the expense of a net deficit in donor axon counts distal to the repair. These differences were manifest by 150 days, at which point quantitative evidence for pruning was obtained. We conclude that ETS repair relies upon injury to the donor nerve.


Assuntos
Axônios/fisiologia , Compressão Nervosa/métodos , Regeneração Nervosa/fisiologia , Procedimentos Neurocirúrgicos/métodos , Animais , Axotomia/métodos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microcirurgia/métodos , Transplante de Tecidos/métodos
18.
Laryngoscope ; 117(10): 1735-40, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17713446

RESUMO

OBJECTIVES/HYPOTHESIS: Anecdotal clinical findings suggest that denervated muscle may regain modest functional recovery via spontaneous collateral sprouts from intact adjacent nerve fibers. The current study evaluates the conditions needed for the denervated masseter muscle to induce axonal sprouting from the facial nerve. We hypothesize that epineurial injury is required to induce collateral sprouting toward a neighboring denervated muscle. STUDY DESIGN: Twelve thy1-yellow fluorescent protein-16 (thy1-YFP-16) transgenic mice whose axons express yellow fluorescent protein were allocated into six groups, with four degrees of facial nerve injury (intact, crush, transection, removed segment) with or without masseter denervation. METHODS: Animals underwent serial in vivo imaging analyses under the fluorescent microscope weekly for 5 or 7 weeks and were subsequently perfused for analysis. Masseter muscle acetylcholine receptors (AChRs) were stained with Alexa Fluor 594 conjugated alpha-bungarotoxin, and whole mounts were imaged with confocal microscopy. RESULTS: In groups with intact or crushed facial nerves, no evidence of collateral sprouting was demonstrated. Mice with transected facial nerve branches or removed segments demonstrated sprouting from the proximal stump into the denervated masseter. Staining of the AChRs confirmed that new neuromuscular junctions were established between the facial nerve and the denervated masseter. CONCLUSIONS: This study suggests that epineurial injury is required to stimulate axonal sprouting into adjacent denervated muscle. Nerves with compromised epineurium may be useful in promoting neo-neurotization after muscle denervation.


Assuntos
Músculo Masseter/inervação , Animais , Axônios/fisiologia , Traumatismos do Nervo Facial/terapia , Músculo Masseter/citologia , Músculo Masseter/metabolismo , Camundongos , Camundongos Transgênicos , Microscopia Confocal , Denervação Muscular , Fibras Nervosas/fisiologia , Fatores de Crescimento Neural/fisiologia , Procedimentos Neurocirúrgicos/métodos , Nervos Periféricos/fisiologia , Receptores Colinérgicos/metabolismo
19.
Exp Neurol ; 207(1): 64-74, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17628540

RESUMO

Transgenic mice whose axons and Schwann cells express fluorescent chromophores enable new imaging techniques and augment concepts in developmental neurobiology. The utility of these tools in the study of traumatic nerve injury depends on employing nerve models that are amenable to microsurgical manipulation and gauging functional recovery. Motor recovery from sciatic nerve crush injury is studied here by evaluating motor endplates of the tibialis anterior muscle, which is innervated by the deep peroneal branch of the sciatic nerve. Following sciatic nerve crush, the deep surface of the tibialis anterior muscle is examined using whole mount confocal microscopy, and reinnervation is characterized by imaging fluorescent axons or Schwann cells (SCs). One week following sciatic crush injury, 100% of motor endplates are denervated with partial reinnervation at 2 weeks, hyperinnervation at 3 and 4 weeks, and restoration of a 1:1 axon to motor endplate relationship 6 weeks after injury. Walking track analysis reveals progressive recovery of sciatic nerve function by 6 weeks. SCs reveal reduced S100 expression within 2 weeks of denervation, correlating with regression to a more immature phenotype. Reinnervation of SCs restores S100 expression and a fully differentiated phenotype. Following denervation, there is altered morphology of circumscribed terminal Schwann cells demonstrating extensive process formation between adjacent motor endplates. The thin, uniformly innervated tibialis anterior muscle is well suited for studying motor reinnervation following sciatic nerve injury. Confocal microscopy may be performed coincident with other techniques of assessing nerve regeneration and functional recovery.


Assuntos
Músculo Esquelético/fisiopatologia , Regeneração Nervosa , Nervo Isquiático/lesões , Animais , Axônios/ultraestrutura , Contagem de Células , Camundongos , Camundongos Transgênicos , Microscopia Confocal , Placa Motora/patologia , Músculo Esquelético/inervação , Músculo Esquelético/patologia , Compressão Nervosa , Recuperação de Função Fisiológica , Células de Schwann/patologia , Nervo Isquiático/patologia , Fatores de Tempo , Caminhada , Ferimentos e Lesões/patologia , Ferimentos e Lesões/fisiopatologia
20.
Exp Neurol ; 207(1): 128-38, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17628544

RESUMO

We propose that double-transgenic thy1-CFP(23)/S100-GFP mice whose Schwann cells constitutively express green fluorescent protein (GFP) and axons express cyan fluorescent protein (CFP) can be used to serially evaluate the temporal relationship between nerve regeneration and Schwann cell migration through acellular nerve grafts. Thy1-CFP(23)/S100-GFP and S100-GFP mice received non-fluorescing cold preserved nerve allografts from immunologically disparate donors. In vivo fluorescent imaging of these grafts was then performed at multiple points. The transected sciatic nerve was reconstructed with a 1-cm nerve allograft harvested from a Balb-C mouse and acellularized via 7 weeks of cold preservation prior to transplantation. The presence of regenerated axons and migrating Schwann cells was confirmed with confocal and electron microscopy on fixed tissue. Schwann cells migrated into the acellular graft (163+/-15 intensity units) from both proximal and distal stumps, and bridged the whole graft within 10 days (388+/-107 intensity units in the central 4-6 mm segment). Nerve regeneration lagged behind Schwann cell migration with 5 or 6 axons imaged traversing the proximal 4 mm of the graft under confocal microcopy within 10 days, and up to 21 labeled axons crossing the distal coaptation site by 15 days. Corroborative electron and light microscopy 5 mm into the graft demonstrated relatively narrow diameter myelinated (431+/-31) and unmyelinated (64+/-9) axons by 28 but not 10 days. Live imaging of the double-transgenic thy1-CFP(23)/S100-GFP murine line enabled serial assessment of Schwann cell-axonal relationships in traumatic nerve injuries reconstructed with acellular nerve allografts.


Assuntos
Movimento Celular , Sistema Livre de Células/transplante , Camundongos Transgênicos , Regeneração Nervosa , Células de Schwann , Nervo Isquiático/fisiopatologia , Nervo Isquiático/cirurgia , Animais , Axônios , Sistema Livre de Células/patologia , Corantes Fluorescentes , Proteínas de Fluorescência Verde/genética , Substâncias Luminescentes , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos/genética , Microscopia Confocal , Microscopia Eletrônica , Junção Neuromuscular/patologia , Nervo Isquiático/patologia , Fatores de Tempo , Transplante Homólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA