Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Hypertens Res ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38769138

RESUMO

Obesity-related hypertension (OH) is accompanied by obvious endothelial dysfunction, which contributes to increased peripheral vascular resistance and hypertension. Adrenomedullin (ADM), a multifunctional active peptide, is elevated in obese humans. The OH rats induced by high fat diet (HFD) for 28 weeks and the human umbilical vein endothelial cells (HUVECs)-treated by palmitic acid (PA) were used to investigate the effects of ADM on endothelial dysfunction and the underlying mechanisms. Vascular reactivity was assessed using mesenteric arteriole rings, and the protein expression levels were examined by Western blot analysis. Compared with the control rats, OH rats exhibited hypertension and endothelial dysfunction, along with reduced eNOS protein expression and Akt activation, and increased protein expression of proinflammatory cytokines and ROS levels. Four-week ADM administration improved hypertension and endothelial function, increased eNOS protein expression and Akt activation, and attenuated endothelial inflammation and oxidative stress in OH rats. In vitro experiment, the antagonism of ADM receptors with ADM22-52 and the suppression of Akt signaling with A6730 significantly blocked ADM-caused increase of NO content and activation of eNOS and Akt, and inhibited the anti-inflammatory and anti-oxidant effect of ADM in PA-stimulated HUVECs. These data indicate that endothelial dysfunction in OH rats is partially attributable to the decreased NO level, and the increased inflammation and oxidative stress. ADM improves endothelial function and exerts hypotensive effect depending on the increase of NO, and its anti-inflammatory and anti-oxidant effect via receptor-Akt pathway.

2.
Plants (Basel) ; 13(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38337990

RESUMO

Dwarfing is one of the common phenotypic variations in asexually reproduced progeny of banana, and dwarfed banana is not only windproof and anti-fallout but also effective in increasing acreage yield. As a key gene in the strigolactone signalling pathway, DWARF53 (D53) plays an important role in the regulation of the height of plants. In order to gain insight into the function of the banana D53 gene, this study conducted genome-wide identification of banana D53 gene based on the M. acuminata, M. balbisiana and M. itinerans genome database. Analysis of MaD53 gene expression under high temperature, low temperature and osmotic stress based on transcriptome data and RT-qPCR was used to analyse MaD53 gene expression in different tissues as well as in different concentrations of GA and SL treatments. In this study, we identified three MaD53, three MbD53 and two MiD53 genes in banana. Phylogenetic tree analysis showed that D53 Musa are equally related to D53 Asparagales and Poales. Both high and low-temperature stresses substantially reduced the expression of the MaD53 gene, but osmotic stress treatments had less effect on the expression of the MaD53 gene. GR24 treatment did not significantly promote the height of the banana, but the expression of the MaD53 gene was significantly reduced in roots and leaves. GA treatment at 100 mg/L significantly promoted the expression of the MaD53 gene in roots, but the expression of this gene was significantly reduced in leaves. In this study, we concluded that MaD53 responds to GA and SL treatments, but "Yinniaijiao" dwarf banana may not be sensitive to GA and SL.

3.
Front Plant Sci ; 14: 1255418, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37822335

RESUMO

Introduction: Cultivated banana are polyploid, with low pollen fertility, and most cultivars are male sterile, which leads to difficulties in banana breeding research. The selection of male parent with excellent resistance and pollen fertility is therefore essential for banana breeding. Wild banana (Musa itinerans) have developed many good characteristics during natural selection and constitute an excellent gene pool for breeding. Therefore, research on wild banana breeding is very important for banana breeding. Results: In the current analysis, we examined the changes in viability of wild banana pollens at different temperatures by in vitro germination, and found that the germination ability of wild banana pollens cultured at 28°C for 2 days was higher than that of pollens cultured at 23°C (pollens that could not germinate normally under low temperature stress), 24°C (cultured at a constant temperature for 2 days) and 32°C (cultured at a constant temperature for 2 days). To elucidate the molecular mechanisms underlying the germination restoration process in wild banana pollens, we selected the wild banana pollens that had lost its germination ability under low temperature stress (23°C) as the control group (CK) and the wild banana pollens that had recovered its germination ability under constant temperature incubation of 28°C for 2 days as the treatment group (T) for transcriptome sequencing. A total of 921 differentially expressed genes (DEGs) were detected in CK vs T, of which 265 were up-regulated and 656 were down-regulated. The combined analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed that the activation, metabolism of various substances (lipids, sugars, amino acids) play a major role in restoring pollen germination capacity. TCA cycle and the sesquiterpenoid and triterpenoid biosynthetic pathways were also significantly enriched in the KEGG pathway. And we found that some DEGs may be associated with pollen wall formation, DNA methylation and DNA repair. The cysteine content, free fatty acid (FFA) content, H2O2 content, fructose content, and sucrose content of pollen were increased at treatment of 28°C, while D-Golactose content was decreased. Finally, the GO pathway was enriched for a total of 24 DEGs related to pollen germination, of which 16 DEGs received targeted regulation by 14 MYBs. Discussions: Our study suggests that the balance between various metabolic processes, pollen wall remodelling, DNA methylation, DNA repairs and regulation of MYBs are essential for germination of wild banana pollens.

4.
Front Plant Sci ; 14: 1216070, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37719217

RESUMO

Introduction: GRAS, named after GAI, RGA, and SCR, is a class of plant-specific transcription factors family that plays a crucial role in growth and development, signal transduction, and various stress responses. Methods: To understand the biological functions of the banana GRAS gene family, a genome-wide identification and bioinformatics analysis of the banana GRAS gene family was performed based on information from the M. acuminata, M. balbisiana, and M. itinerans genomic databases. Result: In the present study, we identified 73 MaGRAS, 59 MbGRAS, and 58 MiGRAS genes in bananas at the whole-genome scale, and 56 homologous genes were identified in the three banana genomes. Banana GRASs can be classified into 10 subfamilies, and their gene structures revealed that most banana GRAS gDNAs lack introns. The promoter sequences of GRASs had a large number of cis-acting elements related to plant growth and development, phytohormone, and adversity stress responsiveness. The expression pattern of seven key members of MaGRAS response to low-temperature stress and different tissues was also examined by quantitative reverse transcription polymerase chain reaction (qRT-PCR). The microRNAs-MaGRASs target prediction showed perfect complementarity of seven GRAS genes with the five mac-miRNAs. The expression of all seven genes was lowest in roots, and the expression of five genes was highest in leaves during low-temperature stress. The expression of MaSCL27-2, MaSCL27-3, and MaSCL6-1 was significantly lower under low-temperature stress compared to the control, except for MaSCL27-2, which was slightly higher than the 28°C control at 4 h. The expression of MaSCL27-2, MaSCL27-3, and MaSCL6-1 dropped to the lowest levels at 24 h, 12 h, and 4 h, respectively. The MaSCL27-4 and MaSCL6-2 expression was intermittently upregulated, rising to the highest expression at 24h, while the expression of MaSCL22 was less variable, remaining at the control level with small changes. Discussion: In summary, it is tentatively hypothesized that the GRAS family has an important function in low-temperature stress in bananas. This study provides a theoretical basis for further analyzing the function of the banana GRAS gene and the resistance of bananas to cold temperatures.

5.
Cureus ; 15(6): e40130, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37304380

RESUMO

Introduction During the SARS-CoV-2 pandemic, rumors claimed that alcohol drinking could someway be useful in contrasting the contagion and even the disease. It appears opportune to bring some robust data to determine whether heavy alcohol drinkers and non-drinkers experienced different infection rates. Methods A cross-sectional study through a simple survey based on the social media software Weixin and the mini survey program Wenjuanxing was carried out in China after the zero-Covid policy ended, namely from 15:00 January 1, 2023, to 12:35 January 3, 2023. The evaluation was conducted among subjects belonging to the first author's Weixin community, mostly residents in the higher populated China area. Study participants received a questionary and were asked about their virus infection status, and were classified into two groups: (a) infected, meaning he/she has been infected at least once (whether recovered or not); (b) remain uninfected, meaning the virus has not infected him/her. A total of 211 subjects adhered to the survey. Alcoholic drinking behavior about liquors with no less than 40% alcohol content in volume was retrieved from the participants. In China, such beverages are almost uniquely referred to as the Chinese Spirits or BaiJiu. The frequency of drinking quantified the drinking behavior, and it is classified into three groups: never drink or drink occasionally (group A); drink one or two times per week (group B); drink three times per week or more often (group C). The hypothesis of an existing relationship between infection status and drinking behavior was advanced before data collection. The numbers of the uninfected people in each of the three drinking groups were counted, and the rates of not-infection were calculated. The rates are compared with each other to conclude whether significant differences exist, considering the size of the samples. The conclusion is drawn from standard hypothesis testing. Results The male/female ratio was 108/103 (51.2% and 48.8%), the mean age was 38.8 years (range 21-68), and the median age of 37.4 years. The total 211 participants fell into three groups with different drinking frequencies, with counts (percentages in total 211 participants) 139 (65.9%) in group A, 28 (13.3%) in group B, and 44 (20.8%) in group C. The number (percentage within the group) of uninfected members in groups A, B, and C are 29 (20.9%), 7 (25.0%), and 17 (38.6%), respectively. The statistical analysis through the Cochran-Armitage trend test gave a significative result: p=0.0209. Conclusions Within the methodology's limitations, this study shows the significant relationship between alcohol drinking habits and the chances of avoiding SARS-CoV-2 infection. A possible hypothesis explaining these findings is advanced. However, the authors warn about misleading conclusions and advocate research that could properly guide ethanol use in the present and other possible pandemics. Limitations This study is based on self-reported data from a specific community in China. There could be recall bias and social desirability bias, and the generalizability of the findings to other populations could be limited. Other factors that could influence infection rates, such as age, occupation, and health status, are not controlled in the present study. There could be other explanations for the observed relationship between alcohol drinking habits and infection rates.

6.
Micromachines (Basel) ; 14(1)2023 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-36677221

RESUMO

Precise trap and manipulation of individual cells is a prerequisite for single-cell analysis, which has a wide range of applications in biology, chemistry, medicine, and materials. Herein, a microfluidic trapping system with a 3D electrode based on AC dielectrophoresis (DEP) technology is proposed, which can achieve the precise trapping and release of specific microparticles. The 3D electrode consists of four rectangular stereoscopic electrodes with an acute angle near the trapping chamber. It is made of Ag-PDMS material, and is the same height as the channel, which ensures the uniform DEP force will be received in the whole channel space, ensuring a better trapping effect can be achieved. The numerical simulation was conducted in terms of electrode height, angle, and channel width. Based on the simulation results, an optimal chip structure was obtained. Then, the polystyrene particles with different diameters were used as the samples to verify the effectiveness of the designed trapping system. The findings of this research will contribute to the application of cell trapping and manipulation, as well as single-cell analysis.

7.
Phys Rev E ; 106(1-1): 014110, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35974601

RESUMO

In this paper, we first develop the projective truncation approximation (PTA) in the Green's function equation of motion (EOM) formalism for classical statistical models. To implement PTA for a given Hamiltonian, we choose a set of basis variables and projectively truncate the hierarchical EOM. We apply PTA to the one-dimensional ϕ^{4} lattice model. Phonon dispersion and static correlation functions are studied in detail. Using one- and two-dimensional bases, we obtain results identical to and beyond the quadratic variational approximation, respectively. In particular, we analyze the power-law temperature dependence of the static averages in the low- and high-temperature limits, and we give exact exponents.

8.
Comput Intell Neurosci ; 2022: 4756480, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35685153

RESUMO

In industry, sensor-based monitoring of equipment or environment has become a necessity. Instead of using a single sensor, multi-sensor system is used to fully detect abnormalities in complex scenarios. Recently, physical models, signal processing technology, and various machine learning models have improved the performance. However, these methods either do not consider the potential correlation between features or do not take advantage of the sequential changes of correlation while constructing an anomaly detection model. This paper firstly analyzes the correlation characteristic of a multi-sensor system, which shows a lot of clues to the anomaly/fault propagation. Then, a multi-sensor anomaly detection method, which finds and uses the correlation between features contained in the multidimensional time-series data, is proposed. The method converts the multidimensional time-series data into temporal correlation graphs according to time window. By transforming time-series data into graph structure, the task of anomaly detection is considered as a graph classification problem. Moreover, based on the stability and dynamics of the correlation between features, a structure-sensitive graph neural network is used to establish the anomaly detection model, which is used to discover anomalies from multi-sensor system. Experiments on three real-world industrial multi-sensor systems with anomalies indicate that the method obtained better performance than baseline methods, with the mean value of F1 score reaching more than 0.90 and the mean value of AUC score reaching more than 0.95. That is, the method can effectively detect anomalies of multidimensional time series.


Assuntos
Aprendizado de Máquina , Redes Neurais de Computação , Processamento de Sinais Assistido por Computador , Fatores de Tempo
9.
Am J Hum Genet ; 109(4): 587-600, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35196516

RESUMO

Covalent tRNA modifications play multi-faceted roles in tRNA stability, folding, and recognition, as well as the rate and fidelity of translation, and other cellular processes such as growth, development, and stress responses. Mutations in genes that are known to regulate tRNA modifications lead to a wide array of phenotypes and diseases including numerous cognitive and neurodevelopmental disorders, highlighting the critical role of tRNA modification in human disease. One such gene, THUMPD1, is involved in regulating tRNA N4-acetylcytidine modification (ac4C), and recently was proposed as a candidate gene for autosomal-recessive intellectual disability. Here, we present 13 individuals from 8 families who harbor rare loss-of-function variants in THUMPD1. Common phenotypic findings included global developmental delay, speech delay, moderate to severe intellectual deficiency, behavioral abnormalities such as angry outbursts, facial dysmorphism, and ophthalmological abnormalities. We demonstrate that the bi-allelic variants identified cause loss of function of THUMPD1 and that this defect results in a loss of ac4C modification in small RNAs, and of individually purified tRNA-Ser-CGA. We further corroborate this effect by showing a loss of tRNA acetylation in two CRISPR-Cas9-generated THUMPD1 KO cell lines. In addition, we also show the resultant amino acid substitution that occurs in a missense THUMPD1 allele identified in an individual with compound heterozygous variants results in a marked decrease in THUMPD1 stability and RNA-binding capacity. Taken together, these results suggest that the lack of tRNA acetylation due to THUMPD1 loss of function results in a syndromic form of intellectual disability associated with developmental delay, behavioral abnormalities, hearing loss, and facial dysmorphism.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Proteínas de Ligação a RNA , Acetilação , Alelos , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Mutação/genética , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/metabolismo , RNA/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
10.
Physiol Plant ; 173(3): 961-977, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34237150

RESUMO

Paeonia is recognized globally due to its ornamental value. However, the mechanisms behind the formation of distinct levels of lignification in Paeonia stems remain largely unknown. In this study, we selected three representative Paeonia species, namely P. ostii (shrub), P. lactiflora (herb), and P. × 'Hexie' (semi-shrub), to evaluate and contrast their respective anatomical structure, phytochemical composition and transcriptomic profile. Our results showed that the degree of lignin deposition on the cell wall, along with the total amount of lignin and its monomers (especially G-lignin) were higher in P. ostii stems compared to the other two species at almost all development stages except 80 days after flowering. Furthermore, we estimated a total number of unigenes of 60,238 in P. ostii, 43,563 in P. × 'Hexie', and 40,212 in P. lactiflora from stem transcriptome. We then built a co-expression network of 25 transcription factors and 21 enzyme genes involved in lignin biosynthesis and identified nine key candidate genes. The expression patterns of these genes were positively correlated with the transcription levels of PAL, C4H, 4CL2, CCR, and COMT, as well as lignin content. Moreover, the highest relative expression levels of CCR, 4CL2, and C4H were found in P. ostii. This study provides an explanation for the observed differences in lignification between woody and herbaceous Paeonia stems, and constitutes a novel reference for molecular studies of stem-specific lignification process and lignin biosynthesis that can impact the ornamental industry.


Assuntos
Paeonia , Parede Celular/genética , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Lignina/metabolismo , Paeonia/genética , Paeonia/metabolismo , Transcriptoma/genética
11.
J Ethnopharmacol ; 273: 113985, 2021 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-33667571

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Paeonia plants have been widely used as traditional Chinese medicinal materials for more than 2,000 years in the treatment of cardiovascular, extravasated blood and female genital diseases; paeoniflorin and paeonol have been implicated as the plants' primary active ingredients. AIM OF THE STUDY: Previous studies have been singularly focused on the chemical constituents and content variation of the Paeonia roots in the advancement of traditional Chinese medicine, with the plants' stems and leaves considered useless. This study aims to explore the chemical constituents, content variation, and antioxidant capacity in Paeonia stems and leaves for the future utilization of traditional Chinese medicine, given that current practices of digging and trade endanger Paeonia in the wild. MATERIALS AND METHODS: Herein, secondary metabolites from the stems and leaves from six developmental stages of the annual growth cycle of Paeonia ostii T. Hong & J. X. Zhang, P. 'Hexie', and P. lactiflora Pall. were qualitatively and quantitatively analyzed via high-performance liquid chromatography with a diode array detector (HPLC-DAD) and high-performance liquid chromatography quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF-MS). Antioxidant capacity at each stage was also evaluated by various free radical scavenging assays. RESULTS: A total of 24 metabolites were detected and identified, including 5 monoterpene glycosides, 4 tannins, 5 phenols, 9 flavonoids, and paeonol. Excepting paeonol and the phenols, the levels of each metabolite category were significantly higher in the leaves than the stems during all developmental stages. The paeoniflorin content in the P. ostii leaves was the highest during the first developmental stage and higher than the standards of the Chinese Pharmacopoeia, suggesting it to be the optimal harvesting stage for medicinal uses. Notably, the antioxidant capacity of the leaves was significantly greater than in the stems, particularly for the leaves of P. 'Hexie'. CONCLUSION: Our study indicates that the leaves of P. 'Hexie' have the potential to be a worthy medicinal substitute to Paeonia roots due to their high monoterpene glycosides, phenols, and flavonoids as well as their strong antioxidant capacity. Further, this study provides a theoretical basis for the development and utilization of non-root Paeonia plant sections as medicinal plant resources.


Assuntos
Antioxidantes/farmacologia , Paeonia/química , Folhas de Planta/química , Caules de Planta/química , Antioxidantes/química , Flavonoides/química , Glicosídeos/química , Paeonia/classificação , Fenóis/química , Compostos Fitoquímicos/análise , Fitoterapia , Plantas Medicinais , Especificidade da Espécie , Taninos/química
12.
Physiol Plant ; 172(1): 64-76, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33247451

RESUMO

Chalcone synthase (CHS) is the key enzyme in the flavonoid biosynthetic pathway and has been studied in many plants, but the function of the CHS gene has not been well characterized in Paeonia ostii. In this study, we obtained a CHS homolog gene from P. ostii, which possessed the putative conserved amino acids of chalcone synthase by multiple alignment analysis and demonstrated the highest expression in developing seeds. In vitro assays of the recombinant PoCHS protein confirmed enzymatic activity using malonyl-CoA and 4-coumaroyl-CoA as substrates, and the optimal pH and reaction temperature were 7.5 and 40 °C, respectively. Furthermore, ectopic over-expression of PoCHS in Arabidopsis up-regulated the expression levels of genes involved in seed development (ABI), glycolysis (PKp2, PDH-E1a, and SUS2/3), and especially fatty acid biosynthesis (BCCP2, CAC2, CDS2, FatA, and FAD3). This resulted in an increased unsaturated fatty acid content, especially α-linolenic acid, in transgenic Arabidopsis seeds. In this study, we examined the functions of CHS homolog of P. ostii and demonstrated its new function in seed fatty acid biosynthesis.


Assuntos
Arabidopsis , Paeonia , Arabidopsis/genética , Vias Biossintéticas/genética , Ácidos Graxos , Paeonia/genética , Sementes/genética
13.
J Phys Condens Matter ; 31(37): 375101, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31174199

RESUMO

The classical Poisson-Boltzmann equation (CPBE), which is a mean field theory by averaging the ion fluctuation, has been widely used to study ion distributions in charged fluids. In this study, we derive a modified Poisson-Boltzmann equation with a random field from the field theory and recover the ion fluctuation through a multiplicative noise added in the CPBE. The Poisson-Boltzmann equation with a random field (RFPBE) captures the effect of the ion fluctuation and gives different ion distributions in the charged fluids compared to the CPBE. To solve the RFPBE, we propose a Monte Carlo method based on the path integral representation. Numerical results show that the effect of the ion fluctuation strengthens the ion diffusion into the domain and intends to distribute the ions in the fluid uniformly. The final ion distribution in the fluid is determined by the competition between the ion fluctuation and the electrostatic forces exerted by the boundaries. The RFPBE is general and feasible for high dimensional systems by taking the advantage of the Monte Carlo method. We use the RFPBE to study a two dimensional system as an example, in which the effect of ion fluctuation is clearly captured.

14.
Neurosci Bull ; 35(1): 34-46, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30276527

RESUMO

Intermedin/adrenomedullin-2 (IMD/AM2), a member of the calcitonin gene-related peptide/AM family, plays an important role in protecting the cardiovascular system. However, its role in the enhanced sympathoexcitation in obesity-related hypertension is unknown. In this study, we investigated the effects of IMD in the paraventricular nucleus (PVN) of the hypothalamus on sympathetic nerve activity (SNA), and lipopolysaccharide (LPS)-induced sympathetic activation in obesity-related hypertensive (OH) rats induced by a high-fat diet for 12 weeks. Acute experiments were performed under anesthesia. The dynamic alterations of sympathetic outflow were evaluated as changes in renal SNA and mean arterial pressure (MAP) in response to specific drugs. Male rats were fed a control diet (12% kcal as fat) or a high-fat diet (42% kcal as fat) for 12 weeks to induce OH. The results showed that IMD protein in the PVN was downregulated, but Toll-like receptor 4 (TLR4) and plasma norepinephrine (NE, indicating sympathetic hyperactivity) levels, and systolic blood pressure were increased in OH rats. LPS (0.5 µg/50 nL)-induced enhancement of renal SNA and MAP was greater in OH rats than in obese or control rats. Bilateral PVN microinjection of IMD (50 pmol) caused greater decreases in renal SNA and MAP in OH rats than in control rats, and inhibited LPS-induced sympathetic activation, and these were effectively prevented in OH rats by pretreatment with the AM receptor antagonist AM22-52. The mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) inhibitor U0126 in the PVN partially reversed the LPS-induced enhancement of SNA. However, IMD in the PVN decreased the LPS-induced ERK activation, which was also effectively prevented by AM22-52. Chronic IMD administration resulted in significant reductions in the plasma NE level and blood pressure in OH rats. Moreover, IMD lowered the TLR4 protein expression and ERK activation in the PVN, and decreased the LPS-induced sympathetic overactivity. These results indicate that IMD in the PVN attenuates SNA and hypertension, and decreases the ERK activation implicated in the LPS-induced enhancement of SNA in OH rats, and this is mediated by AM receptors.


Assuntos
Adrenomedulina/metabolismo , Hipertensão/etiologia , Neuropeptídeos/metabolismo , Receptores de Adrenomedulina/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Lipopolissacarídeos/farmacologia , Masculino , Obesidade/complicações , Ratos Sprague-Dawley , Receptores de Adrenomedulina/efeitos dos fármacos , Sistema Nervoso Simpático/efeitos dos fármacos , Sistema Nervoso Simpático/metabolismo
15.
Sci Bull (Beijing) ; 64(5): 293-300, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36659592

RESUMO

Two-dimensional magnets have received increasing attention since Cr2Ge2Te6 and CrI3 were experimentally exfoliated and measured in 2017. Although layered ferromagnetic metals were demonstrated at room temperature, a layered ferromagnetic semiconductor with high Curie temperature (Tc) is yet to be unveiled. Here, we theoretically predicted a family of high Tc ferromagnetic monolayers, namely MnNX and CrCX (X = Cl, Br and I; C = S, Se and Te). Their Tc values were predicted from over 100 K to near 500 K with Monte Carlo simulations using an anisotropic Heisenberg model. Eight members among them show semiconducting bandgaps varying from roughly 0.23 to 1.85 eV. These semiconducting monolayers also show extremely large anisotropy, i.e. ∼101 for effective masses and ∼102 for carrier mobilities, along the two in-plane lattice directions of these layers. Additional orbital anisotropy leads to a spin-locked linear dichroism, in different from previously known circular and linear dichroisms in layered materials. Together with the mobility anisotropy, it offers a spin-, dichroism- and mobility-anisotropy locking. These results manifest the potential of this 2D family for both fundamental research and high performance spin-dependent electronic and optoelectronic devices.

16.
Foods ; 9(1)2019 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-31905710

RESUMO

Paeonia ostii is an important woody oil plant cultivated in China on a large scale. Its seed oil is enriched with unsaturated fatty acids and a high content of alpha-linolenic acid (ALA), which are beneficial to human health. The aim of this research is to determine the qualitative traits characteristic of P. ostii seed from various production areas in China. In this study, seed quality traits were evaluated on the basis of proximate composition, content of fatty acids, tocopherol, secondary metabolites, and the antioxidant activity of seed coat (PSC) and kernel (PSK). A high content of total fatty acids (298.89-399.34 mg g-1), crude protein (16.91%-22.73%), and total tocopherols (167.83-276.70 µg g-1) were obtained from PSK. Significant differences were found in the content of palmitic acids (11.31-14.27 mg g-1), stearic acids (2.42-4.24 mg g-1), oleic acids (111.25-157.63 mg g-1), linoleic acids (54.39-83.59 mg g-1), and ALA (99.85-144.71 mg g-1) in the 11 main production areas. Eight and seventeen compounds were detected in PSC and PSK, respectively. A significantly higher content of total phenols was observed in PSC (139.49 mg g-1) compared with PSK (3.04 mg g-1), which was positively related to antioxidant activity. This study indicates that seeds of P. ostii would be a good source of valuable oil and provides a basis for seed quality evaluation for the production of edible oil and potential ALA supplements from the promising woody oil plant.

17.
Oncol Lett ; 16(4): 4159-4168, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30250531

RESUMO

Breast Cancer (BC) is one of the most common primary malignant tumors, which is life threatening. Previous studies have demonstrated that microRNAs (miRNA) may regulate or affect the incidence of BC. However, results of these studies are inconsistent, due to factors including the different sequencing platforms and sample selection methods used. To explore the key miRNAs involved in the pathogenesis of BC, and to use these miRNAs to monitor the tumor progression of BC, a systematic review was performed on the previous studies examining BC miRNA; the function of the target genes that were modulated by these key miRNAs were also analyzed. A total of 8 representative miRNA datasets examining the pathogenesis of BC were selected. Key miRNAs were identified by comparing the overlap between these datasets. Then, the target genes of these key miRNAs were predicted through TargetScan. Furthermore, functional enrichment analysis of target genes and transcription factor (TF) binding analysis was also performed using the Database for Annotation, Visualization and Integrated Discovery and Tfacts database, respectively. A total of 6 key miRNAs were identified by comparing the differentially expressed miRNAs datasets in the pathogenesis of BC. Compared with normal tissues, 3 miRNAs were upregulated: Hsa-miR-21b; hsa-miR-29b; and hsa-miR-155; and 3 miRNAs were downregulated: Hsa-miR-10b; hsa-miR-125; and hsa-miR-145. The target genes regulated by the up- and downregulated miRNAs were significantly enriched in the biological processes of 'transcriptional regulation', and these target genes depended on RNA polymerase II promoter and DNA template, respective to the up- and downregulated genes. The downregulated key miRNAs were specifically enriched in the biological processes of 'ephrin receptor signaling pathway' (GO: 0048013) and 'axon guidance' (GO: 0007411). TF analysis of the key miRNA target genes revealed that 104 TFs interacted with the 319 target genes of the upregulated miRNAs, while the 92 TFs interacted with the 254 target genes of the downregulated miRNAs. In total, there were 133 TFs and 63 (47.3%) TFs shared by the 2 types (up- and downregulated) of target genes. In summary, 6 key miRNAs in BC were identified by systematic review; the corresponding target genes and TFs that bind to these target genes were also identified, and the potential functions of target genes were revealed. These data may be beneficial to increasing the accuracy of BC treatment through monitoring miRNA.

18.
Eur J Med Chem ; 145: 64-73, 2018 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-29324344

RESUMO

IQS has been proven to be a new quorum sensing (QS) system against bacterial biofilm formation, which is activated in the common phosphate-limiting environment of infected tissues taking over the central las system. Up to now, numerous biofilm inhibitors which function by affecting traditional QS system have been reported. However, no compound has been reported to exert anti-biofilm activity through IQS system. Herein, various novel IQS derivatives were synthesized by the reaction of thiazole-4-carboxylic acid with different linear alcohols (R-OH) or amines (R-NH2). IQS derivatives with four carbon chain length of R group were found to present the best biofilm inhibition activity. Compound B-11 as the model molecule was observed to inhibit biofilm formation only under phosphate-limiting condition, and increase in B-11 concentration significantly reduced the expression of rhlA-gfp and pqsA-gfp, but lasB-gfp. Moreover, B-11 reduced production of virulence factors of rhamnolipid and pyocyanin under phosphate limitation. These observations indicated that the synthesized compounds possessed the anti-biofilm activity through IQS pathways rather than traditional QS pathways, which pave a path for future molecular design against bacterial biofilm formation.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Percepção de Quorum/efeitos dos fármacos , Tiazóis/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade , Tiazóis/síntese química , Tiazóis/química
19.
Zhong Yao Cai ; 39(2): 302-6, 2016 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-30080358

RESUMO

Objective: To study the correlation between chemical component content and grades of Cistanche deserticola,and then to determine the optimum steaming time of different grades of Cistanche deserticola. Methods: Morphological indexes of postharvest stems of Cistanche deserticola were analyzed by principal component analysis and K-mean cluster analysis to determine a grading standard. Concentrations of phenylethanoid glycosides,polysaccharides,dilute ethanol-soluble extracts and total ashes in dried stems of Cistanche deserticola were determined using high performance liquid chromatography and ultraviolet spectrophotometer. Results: There was no significant relationship between grades and chemical component content. The effect of steaming time was stronger than that of grades on chemical component content. Moreover, the optimum steaming time of grade Ⅰwas 30 min,of grade Ⅱ and Ⅲ were both 20 min. Conclusion: It is suggested that postharvest Cistanche deserticola should be divided into three grades and steamed for a certain time.


Assuntos
Cistanche , Cromatografia Líquida de Alta Pressão , Glicosídeos , Extratos Vegetais , Polissacarídeos , Vapor
20.
Ying Yong Sheng Tai Xue Bao ; 26(8): 2321-8, 2015 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-26685594

RESUMO

To evaluate the ecological adaptation mechanism of Haloxylon ammodendron and H. persicum from Ningxia, the host of Cistanche deserticola, the chlorophyll fluorescence under dehydration and diurnal variation was determined by IMAGING-PAM method. The results showed that H. ammodendron had higher photosynthetic electron transport activity (Fv/Fm), photosynthetic efficiency (qP), and PS II electron transport activity (ETR) than H. persicum. After 48 h dehydration, the chlorophyll fluorescence and water-retaining property of H. ammodendron were significantly higher than those of H. persicum. The significant difference in diurnal variation between H. ammo- dendron and H. persicum was observed and a 'V' trend was exhibited. It suggested that H. ammodendron had a stronger ability to adapt to the environment and had wider distribution, while H. persicum was limited by water and light and had narrow distribution.


Assuntos
Amaranthaceae/fisiologia , Clorofila/química , Ritmo Circadiano , Desidratação , Fotossíntese , Folhas de Planta/química , Adaptação Fisiológica , Transporte de Elétrons , Fluorescência , Luz , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA