Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Br J Dermatol ; 184(6): 1170-1174, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33000479

RESUMO

Pseudoxanthoma elasticum (PXE) is a multisystem disorder characterized by ectopic mineralization of connective tissues with primary manifestations in the skin, eyes and the cardiovascular system. The classic forms of PXE are caused by mutations in the ABCC6 gene encoding the ABCC6 protein, expressed primarily in the liver. Cutis laxa (CL) manifests with loose and sagging skin with loss of recoil. In 2009 we investigated a 19-year-old patient with overlapping cutaneous features of PXE and CL, together with alpha thalassaemia. Genetic analysis failed to identify pathogenic mutations in ABCC6. More recently we developed a gene-targeted panel of next-generation sequencing technology. This panel has 29 genes, 22 of which, including ABCC6 and GGCX, are associated with ectopic mineralization phenotypes. Mutation analysis in the patient identified two heterozygous GGCX mutations: c.200_201delTT in exon 2 and c.763G>A, p.V255M in exon 7. The GGCX gene encodes a γ-glutamyl carboxylase necessary for activation of blood coagulation factors in the liver. The p.V255M mutation was previously reported to result in reduced γ-glutamyl carboxylase activity in vitro, while the c.200_201delTT mutation is novel. Previous studies reported that mutations in GGCX cause overlapping PXE/CL skin phenotypes in association with or without multiple vitamin K-dependent coagulation factor deficiency. Our patient had loose redundant skin, moderate-to-severe angioid streaks and characteristic calcification of elastic structures in the mid dermis, consistent with PXE/CL overlap, but no coagulation abnormalities. Our studies expand the GGCX mutation landscape in patients with PXE-like phenotypes.


Assuntos
Cútis Laxa , Pseudoxantoma Elástico , Adulto , Heterozigoto , Humanos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Mutação/genética , Fenótipo , Pseudoxantoma Elástico/genética , Adulto Jovem
2.
Br J Dermatol ; 169(4): 869-79, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23662922

RESUMO

BACKGROUND: Multiphoton microscopy (MPM) is a novel imaging technology that has recently become applicable for diagnostic purposes. The use of (near) infrared light in MPM allows for deep tissue imaging. In addition, this modality exploits the autofluorescent nature of extracellular matrix fibres within the skin. OBJECTIVES: To quantitate the structure and abundance of elastic fibres in human dermis in three dimensions utilizing autofluorescent signals generated by MPM for the objective examination of elastin-related skin disorders. METHODS: Cross-sections of skin samples from elastin-related disorders were analysed by MPM and correlated to histopathology. In situ visualization of elastic fibres by MPM was conducted by en face imaging of ex vivo skin samples through the intact epidermis. Image analysis software was used to quantify elastic fibres in three dimensions. RESULTS: Based on the MPM-detected elastin-specific autofluorescence, we developed the Dermal Elastin Morphology Index (DEMI), calculated as the ratio of elastic fibre surface area and volume. This enabled objective three-dimensional quantification of elastic fibres. Quantitative scoring of sun-damaged skin using DEMI correlated with qualitative histopathological grading of the severity of solar elastosis. Furthermore, this approach was applied to changes in elastic fibre architecture in other disorders, such as pseudoxanthoma elasticum (PXE), PXE-like syndrome, elastofibroma, focal dermal elastosis, anetoderma, mid-dermal elastolysis and striae distensae. We imaged elastic fibres in intact ex vivo skin imaged en face through the epidermis, indicating that this approach could be used in vivo. CONCLUSIONS: MPM has the potential for noninvasive in vivo visualization of elastic fibres in the dermis with near histological resolution. DEMI allows objective assessment of elastic fibres to support diagnosis and monitoring of disease progress or therapy of elastin-related skin disorders.


Assuntos
Elastina/metabolismo , Dermatopatias/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Humanos , Imageamento Tridimensional , Microscopia de Fluorescência por Excitação Multifotônica , Pessoa de Meia-Idade , Pseudoxantoma Elástico/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA