RESUMO
Unsaturated alcohols are a class of Biogenic volatile organic compounds (BVOCs) emitted in large quantities by plants when damaged or under adverse environmental conditions, and studies on their atmospheric degradation at night are still lacking. We used chamber experiments to study the gas-phase reactions of three unsaturated alcohols, E-2-penten-1-ol, Z-2-hexen-1-ol and Z-3-hepten-1-ol, with NO3 radicals (NO3â¢) during the night. The rate constants of these reactions were (11.7 ± 1.76) × 10-13, (8.55 ± 1.33) × 10-13 and (6.08 ± 0.47) × 10-13 cm3/(molecule·s) at 298K and 760 Torr, respectively. In contrast, the reaction rate of similar substances with ozone was about 10-18 cm3/(molecule·s), which indicates that the reaction with NO3⢠is the main oxidation pathway for unsaturated alcohols at night. Small molecule aldehydes and ketones were the main gas-phase organic products of the reaction of three aldehydes and ketones with NO3â¢, and the total small molecule aldehydes and ketones yields can reach between 45%-60%. They mainly originate from the breakage of alkoxy radicals, and different breakage sites determine different product distributions. In addition, the SOA yields of the three unsaturated alcohols with NO3⢠were 7.1% ± 1.0%, 12.5% ± 1.9% and 30.0% ± 4.5%, respectively, which were much higher than those of similarly structured substances with O3 or OH radicals (â¢OH). The results of high-resolution mass spectrometry shows that the main components of Secondary organic aerosol (SOA) of the three unsaturated alcohols are dimeric compounds containing several nitrate groups, which are formed through the polymerization of oxyalkyl radicals.
Assuntos
Poluentes Atmosféricos , Álcoois , Compostos Orgânicos Voláteis , Álcoois/química , Cinética , Compostos Orgânicos Voláteis/química , Poluentes Atmosféricos/química , Nitratos/química , Modelos Químicos , Ozônio/química , Oxirredução , Atmosfera/químicaRESUMO
Peroxyacetyl nitrate (PAN) is a typical secondary photochemical product in the atmospheric environment with significant adverse effects on human health and plant growth. In this study, PAN and other pollutants, as well as meteorological conditions were observed intensively from August to September in 2022 at a typical urban sampling site in Beijing, China. The mean and maximum PAN concentrations during the observation period were 1.00 ± 0.97 ppb and 4.84 ppb, respectively. Severe photochemical pollution occurred during the observation period, with the mean PAN concentration about 3.1 times higher than that during the clean period. There was a good positive correlation between O3 and PAN, and their correlation was higher during the O3 exposure period than that during the clean period. The simulated results by box-model coupled with the Master Chemical Mechanism (MCM v3.3.1) showed that the O3-related reactions were the largest sources of OH radicals during O3 exposure period, which was conducive to the co-contamination of PAN and O3. Acetaldehyde (CH3CHO) and methylglyoxal (MGLY) were the largest OVOCs precursors of peroxyacetyl radicals (PA), with the contributions to the total PA generated by OVOCs about 67 % - 83 % and 17 % - 30 %, respectively. The reduction of emissions from liquefied petroleum gas (LPG) and solvent usage has the highest reduction effect on PAN and O3, followed by the control of gasoline vehicle exhaust emissions. This study deepens the understanding of the PAN photochemistry in urban areas with high O3 background conditions and the impact of anthropogenic activities on the photochemical pollution. Meanwhile, the findings of this study highlight the necessity of strengthening anthropogenic emissions control to effectively reduce the co-contamination of PAN and O3 in Beijing in the future.
RESUMO
Aromatic volatile organic compounds (VOCs) are an important precursor of secondary organic aerosol (SOA) in the urban environment. SOA formed from the oxidation of anthropogenic VOCs can be substantially more abundant than biogenic SOA and has been shown to account for a significant fraction of fine particulate matter in urban areas. A potential aerosol mass (PAM) chamber was used to investigate the oxidised products from the photo-oxidation of m-xylene and toluene. The experiments were carried out with OH radical as oxidant in both high- and low-NOx conditions and the resultant aerosol samples were collected using quartz filters and analysed by GC × GC-TOFMS. Results show the oxidation products derived from both precursors included ring-retaining and -opening compounds (unsaturated aldehydes, unsaturated ketones and organic acids) with a high number of ring-opening compounds observed from toluene oxidation. Glyoxal and methyl glyoxal were the major ring-cleavage products from both oxidation systems, indicating that a bicyclic route plays an important role in their formation. SOA yields were higher for both precursors under high-NOx (toluene: 0.111; m-xylene: 0.124) than at low-NOx (toluene: 0.089; m-xylene: 0.052), likely linked to higher OH concentrations during low-NOx experiments which may lead to higher degree of fragmentation. DHOPA (2,3-dihydroxy-4-oxo-pentanoic acid), a known tracer of toluene oxidation, was observed in both oxidation systems. The mass fraction of DHOPA in SOA from toluene oxidation was about double the value reported previously, but it should not be regarded as a tracer solely for oxidation of toluene as m-xylene oxidation gave a similar relative yield.
Assuntos
Poluentes Atmosféricos , Compostos Orgânicos Voláteis , Tolueno/análise , Xilenos/análise , Material Particulado/análise , Aerossóis/análise , Compostos Orgânicos Voláteis/análise , Poluentes Atmosféricos/análiseRESUMO
Electrocatalytic CO2 reduction reaction (CO2 RR) offers a promising strategy to lower CO2 emission while producing value-added chemicals. A great challenge facing CO2 RR is how to improve energy efficiency by reducing overpotentials. Herein, partially nitrided Ni nanoclusters (NiNx ) immobilized on N-doped carbon nanotubes (NCNT) for CO2 RR are reported, which achieves the lowest onset overpotential of 16 mV for CO2 -to-CO and the highest cathode energy efficiency of 86.9% with CO Faraday efficiency >99.0% to date. Interestingly, NiNx /NCNT affords a CO generation rate of 43.0 mol g-1 h-1 at a low potential of -0.572 V (vs RHE). DFT calculations reveal that the NiNx nanoclusters favor *COOH formation with lower Gibbs free energy than isolated Ni single-atom, hence lowering CO2 RR overpotential. As NiNx /NCNT is applied to a membrane electrode assembly system coupled with oxygen evolution reaction, a cell voltage of only 2.13 V is required to reach 100 mA cm-2 , with total energy efficiency of 62.2%.
RESUMO
The atmospheric chemistry of nitrous acid (HONO) has received extensive attention because of its significant contribution to hydroxyl (OH) radicals. Heterogeneous reaction of NO2 is an important HONO source, and its reaction mechanism is affected by many factors, such as concentration of gaseous NO2, surface adsorbed water, relative humidity and temperature. Although laboratory studies have confirmed the effect of temperature on heterogeneous reaction of NO2, there are few field observations reporting about it. We have conducted a field observation in the early spring 2021 when the temperature ranges widely (-0.1-24.7 °C). Concentrations of HONO and related pollutants at the urban area of Beijing are obtained. The hourly averaged HONO concentration reaches 4.87 ppb with a mean value of 1.48 ± 1.09 ppb. Combined with box model and RACM2 mechanism, we found an optimal temperature (â¼10 °C) existing for heterogeneous reaction of NO2 during this measurement. When considering the promotion effect of optimal temperature, the contribution of heterogeneous reaction of NO2 to HONO can increase by 10%. This result will provide essential information for developing an accurate model of HONO chemistry in the atmosphere especially for certain periods or regions with temperature changing largely. Moreover, heterogeneous reaction of NO2 is the vital source of HONO, contributing 63-76% to simulated HONO during this measurement. Note that HONO photolysis is the most important formation pathway of OH radicals, and ambient HONO concentration is the obbligato constraint for evaluating atmospheric oxidation by model simulations.
Assuntos
Ácido Nitroso , Ozônio , Radical Hidroxila , Dióxido de Nitrogênio , PequimRESUMO
Atmospheric oxidizing capacity (AOC) is the fundamental driving factors of chemistry process (e.g., the formation of ozone (O3) and secondary organic aerosols (SOA)) in the troposphere. However, accurate quantification of AOC still remains uncertainty. In this study, a comprehensive field campaign was conducted during autumn 2019 in downtown of Beijing, where O3 and PM2.5 episodes had been experienced successively. The observation-based model (OBM) is used to quantify the AOC at O3 and PM2.5 episodes. The strong intensity of AOC is found at O3 and PM2.5 episodes, and hydroxyl radical (OH) is the dominating daytime oxidant for both episodes. The photolysis of O3 is main source of OH at O3 episode; the photolysis of nitrous acid (HONO) and formaldehyde (HCHO) plays important role in OH formation at PM2.5 episode. The radicals loss routines vary according to precursor pollutants, resulting in different types of air pollution. O3 budgets and sensitivity analysis indicates that O3 production is transition regime (both VOC and NOx-limited) at O3 episode. The heterogeneous reaction of hydroperoxy radicals (HO2) on aerosol surfaces has significant influence on OH and O3 production rates. The HO2 uptake coefficient (γHO2) is the determining factor and required accurate measurement in real atmospheric environment. Our findings could provide the important bases for coordinated control of PM2.5 and O3 pollution.
Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Aerossóis/análise , Poluentes Atmosféricos/análise , Pequim , China , Monitoramento Ambiental , Formaldeído , Radical Hidroxila/análise , Ácido Nitroso , Oxidantes , Oxirredução , Ozônio/análise , Material Particulado/análise , Compostos Orgânicos Voláteis/análiseRESUMO
Atmospheric trace metals are a key component of particulate matter and significantly influence the atmospheric process and human health. The dissolved fraction of trace metals represents their bioavailability and exhibits high chemical activity. However, the optimum measurement method for detecting the soluble fraction of trace metals is still undetermined. The impact of variations in pollution on the soluble fraction is largely unrevealed. Therefore, in this work, a one-month field observation was conducted in Central China and different extraction solvents were used to determine the proper measurement method for the soluble fraction of trace metals and investigate the variation pattern under different pollution conditions. The findings show that solvents with acidity near that of aerosol water can better reflect the actual soluble fraction of trace metals in fine particulate matter. The soluble fraction of trace metals tends to increase with pollution level increased, demonstrating unexpectedly high health risks and chemical activity under heavy haze conditions. Our results indicate that remediation and trace metal pollution control are urgently needed.
Assuntos
Poluentes Atmosféricos , Metais Pesados , Oligoelementos , Poluentes Atmosféricos/análise , China , Monitoramento Ambiental/métodos , Humanos , Metais Pesados/análise , Material Particulado/análise , Solventes , Oligoelementos/análiseRESUMO
As an important precursor of hydroxyl radical (OH), nitrous acid (HONO) plays a significant role in atmospheric chemistry. Here, an observation of HONO and relevant air pollutants in an urban site of Beijing from 14 to 28 April, 2017 was performed. Two distinct peaks of HONO concentrations occurred during the observation. In contrast, the concentration of particulate matter in the first period (period â ) was significantly higher than that in the second period (period â ¡). Comparing to HONO sources in the two periods, we found that the direct vehicle emission was an essential source of the ambient HONO during both periods at night, especially in period â ¡. The heterogeneous reaction of NO2 was the dominant source in period â , while the homogeneous reaction of NO with OH was more critical source at night in period â ¡. In the daytime, the heterogeneous reaction of NO2 was a significant source and was confirmed by the good correlation coefficients (R2) between the unknown sources (Punknown) with NO2, PM2.5, NO2 × PM2.5 in period â . Moreover, when solar radiation and OH radicals were considered to explore unknown sources in the daytime, the enhanced correlation of Punknown with photolysis rate of NO2 and OH ( [Formula: see text] × OH) were 0.93 in period â , 0.95 in period â ¡. These excellent correlation coefficients suggested that the unknown sources released HONO highly related to the solar radiation and the variation of OH radicals.
Assuntos
Dióxido de Nitrogênio , Ácido Nitroso , Pequim , Ácido Nitroso/análise , Material Particulado , Emissões de VeículosRESUMO
The field observation of 54 non-methane hydrocarbon compounds (NMHCs) was conducted from September 1 to October 20 in 2020 during autumn in Haidian District, Beijing. The mean concentration of total NMHCs was 29.81 ± 11.39 ppbv during this period, and alkanes were the major components. There were typical festival effects of NMHCs with lower concentration during the National Day. Alkenes and aromatics were the dominant groups in ozone formation potential (OFP) and OH radical loss rate (LOH). The positive matrix factorization (PMF) running results revealed that vehicular exhaust became the biggest source in urban areas, followed by liquefied petroleum gas (LPG) usage, solvent usage, and fuel evaporation. The box model coupled with master chemical mechanism (MCM) was applied to study the impacts of different NMHCs sources on ozone (O3) formation in an O3 episode. The simulation results indicated that reducing NMHCs concentration could effectively suppress O3 formation. Moreover, reducing traffic-related emissions of NMHCs was an effective way to control O3 pollution at an urban site in Beijing.
Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Pequim , China , Monitoramento Ambiental/métodos , Hidrocarbonetos/análise , Metano , Ozônio/análise , Emissões de Veículos/análise , Compostos Orgânicos Voláteis/análiseRESUMO
Atmospheric nitrous acid (HONO) is a dominant precursor of hydroxyl (OH) radicals, and its formation mechanisms are still controversial. Few studies have simultaneously explored effects of different combustion processes on HONO sources. Hereby, synchronous HONO measurement in urban (BJ), suburban (XH) and rural (DBT) areas with different combustion processes is performed in the North China Plain in winter. A box model is utilized to analyze HONO formation mechanisms. HONO concentration is the highest at the DBT site (2.51 ± 1.90 ppb), followed by the XH (2.18 ± 1.95 ppb) and BJ (1.17 ± 1.20 ppb) sites. Vehicle exhaust and coal combustion significantly contribute to nocturnal HONO at urban and rural sites, respectively. During a stagnant pollution period, the NO+OH reaction and combustion emissions are more crucial to HONO in urban and rural areas; meanwhile, the heterogeneous reaction of NO2 is more significant in suburban areas. Moreover, the production rate of OH from HONO photolysis is about 2 orders of magnitude higher than that from ozone photolysis. Consequently, vehicle exhaust and coal combustion can effectively emit HONO, further causing environmental pollution and health risks. It is necessary to expand the implementation of the clean energy transition policy in China, especially in areas with substantial coal combustion.
Assuntos
Ácido Nitroso , Emissões de Veículos , China , Carvão Mineral , Radical HidroxilaRESUMO
Nitrous acid (HONO) is an important photochemical precursor to hydroxyl radicals particularly in an urban atmosphere, yet its primary emission and secondary production are often poorly constrained. Here, we measured HONO and nitrogen oxides (NOx) at both the inlet and the outlet in a busy urban tunnel (>30â¯000 vehicles per day) in south China. Multiple linear regression revealed that 73.9% of the inlet-outlet incremental HONO concentration was explained by NO2 surface conversion, while the rest was directly emitted from vehicles with an average HONO/NOx ratio of 1.31 ± 0.87%, which was higher than that from previous tunnel studies. The uptake coefficient of NO2, γ(NO2), on the tunnel surfaces was calculated to be (7.01 ± 0.02) × 10-5, much higher than that widely used in models. As tunnel surfaces are typical of urban surfaces in the wall and road materials, the dominance of HONO from surface reactions in the poorly lit urban tunnel demonstrated the importance of NO2 conversion on urban surfaces, instead of NO2 conversion on the aerosol surface, for both daytime and night-time HONO even in polluted ambient air. The higher γ(NO2) on urban surfaces and the elevated HONO/NOx ratio from this study can help explain the missing HONO sources in urban areas.
Assuntos
Ácido Nitroso , Emissões de Veículos , Aerossóis , Atmosfera , Dióxido de NitrogênioRESUMO
The visible-light-driven photoreduction of CO2 to value-added chemicals over metal-free photocatalysts without sacrificial reagents is very interesting, but challenging. Herein, we present amide-bridged conjugated organic polymers (amide-COPs) prepared via self-condensation of amino nitriles in combination with hydrolysis, for the photoreduction of CO2 with H2O without any photosensitizers or sacrificial reagents under visible light irradiation. These catalysts can afford CO as the sole carbonaceous product without H2 generation. Especially, amide-DAMN derived from diaminomaleonitrile exhibited the highest activity for the photoreduction of CO2 to CO with a generation rate of 20.6 µmol g-1 h-1. Experiments and DFT calculations confirmed cyano/amide groups as active sites for CO2 reduction and second amine groups for H2O oxidation, and suggested that superior selectivity towards CO may be attributed to the adjacent redox sites. This work presents a new insight into designing photocatalysts for artificial photosynthesis.
RESUMO
HONO is an important component of reactive nitrogen (Nr) and precursors of OH radical. However, the source and removal of HONO are not clear. Here, measurements of HONO (May 18-31, 2018) were conducted in Xi'an and Xianyang simultaneously for the first time. The relationship between HONO and other Nr (such as NO and NO2) in two cities was analyzed. The mixing ratio of HONO in Xi'an was 1.2 ± 0.8 ppbv, and that in Xianyang was 1.2 ± 1.1 ppbv. The nighttime HONO mixing ratio was higher in Xianyang, while the daytime HONO was higher in Xi'an. Compared with the contribution from heterogeneous process of NO2, direct emissions and homogeneous processes (NO + OH) were less important for nocturnal HONO formation in these two cities. The relative contribution of heterogeneous process in Xianyang was more important than that in Xi'an. The reaction of NO2 upon aerosols surface was identified as an important source of HONO for two sites. The conversion of NO2 on the other surfaces might attend the heterogeneous formation of HONO in Xianyang site. Daytime HONO budget analysis indicated that there was an additional unknown formation process of HONO at two sites. The net OH production rate from HONO (from 08:00 to 17:00) was 1.6 × 107 and 1.3 × 107 molecule/(cm3 s) for Xian and Xianyang, 5.2 and 3.5 times higher than from O3 photolysis. Besides, a dust storm appeared during this observation period, and the impact of local emission and transport processes was separately analyzed. The sources, characteristics, and effects of HONO identified in this study laid a foundation for further research on HONO and air pollution in the Guanzhong area.
Assuntos
Poluição do Ar , Ácido Nitroso , Aerossóis , China , Cidades , NitrogênioRESUMO
Gas-phase nitrous acid (HONO) is a major precursor of hydroxyl radicals that dominate atmospheric oxidizing capacity. Nevertheless, pathways of HONO formation remain to be explored. This study unveiled an important CO2-catalysis mechanism of HONO formation, using Born-Oppenheimer molecular dynamics simulations and free-energy samplings. In the mechanism, HCO3- formed from CO2 hydrolysis reacts with NO2 dimers to produce HONO at water surfaces, and simultaneously, itself reconverts back to CO2 via intermediates OC(O)ONO- and HOC(O)ONO. A flow system experiment was performed to confirm the new mechanism, which indicated that HONO concentrations with CO2 injections were increased by 29.4-68.5%. The new mechanism can be extended to other humid surfaces. Therefore, this study unveiled a previously overlooked vital role of CO2 that catalyzes formation of HONO and affects atmospheric oxidizing capacity.
Assuntos
Dióxido de Carbono , Ácido Nitroso , Radical Hidroxila , ÁguaRESUMO
Photocatalytic materials are proved to effectively eliminate gaseous pollutants and are widely used in the environment. However, as one of the rare experiments focusing on their influence on secondary aerosol formation generated in the gas phase (SAg), our study demonstrated the high-yield SAg formation in the photocatalysis process. In this study, the photodegradation of SO2 by TiO2 under various relative humidity (RH) conditions was deeply explored with multiple methods. Unexpectedly, H2SO4 aerosols (SAg-H2SO4) in yields of 10.10-32.64% were observed under the studied RH conditions for the first time. Gaseous â¢OH and H2O2 generated from the oxidation of H2O and reduction of O2 by TiO2 were directly detected in the photocatalysis process, and they were identified as the determining factor for SAg-H2SO4 formation. The formation of SAg-H2SO4 was also influenced by RH, the heterogeneous reaction of SO2, and the uptake of H2SO4. The role of the released gaseous â¢OH and H2O2 on atmospheric chemistry was proved to be unignorable by adopting the obtained parameters into the real environment. These findings provided direct experimental evidence of secondary pollution in the photocatalysis process and are of great significance to the field of atmospheric environment and photocatalytic materials.
Assuntos
Poluentes Atmosféricos , Gases , Aerossóis , Poluentes Atmosféricos/análise , Peróxido de Hidrogênio , Oxirredução , Espécies Reativas de Oxigênio , TitânioRESUMO
The reaction mechanism and kinetics of the simplest Criegee intermediate CH2OO reaction with hydroperoxymethyl formate (HPMF) was investigated at high-level quantum chemistry calculations. HPMF has two reactive functional groups, -C(O)OH and -OOH. The calculated results of thermodynamic data and rate constants indicated that the insertion reactions of CH2OO with -OOH group of HPMF were more favorable than the reactions of CH2OO with -C(O)OH group. The calculated overall rate constant was 2.33 × 10-13 cm3/(moleculeâ sec) at 298 K and the rate constants decreased as the temperature increased from 200 to 480 K. In addition, we also proved the polymerization reaction mechanism between CH2OO and -OOH of HPMF. This theoretical study interpreted the previous experimental results, and supplied the structures of the intermediate products that couldn't be detected during the experiment.
Assuntos
Formiatos , Teoria Quântica , Cinética , Temperatura , TermodinâmicaRESUMO
Peroxyacetyl nitrate (PAN) is an important indicator for photochemical pollution, formed similar to ozone in the photochemistry of certain volatile organic compounds (VOCs) in the presence of nitrogen oxides, and has displayed surprisingly high concentrations during wintertime that were better correlated to particulate rather than ozone concentrations, for which the reasons remained unknown. In this study, wintertime observations of PAN, VOCs, PM2.5, HONO, and various trace gases were investigated to find the relationship between aerosols and wintertime PAN formation. Wintertime photochemical pollution was affirmed by the high PAN concentrations (average: 1.2 ± 1.1 ppb, maximum: 7.1 ppb), despite low ozone concentrations. PAN concentrations were determined by its oxygenated VOC (OVOC) precursor concentrations and the NO/NO2 ratios and can be well parameterized based on the understanding of their chemical relationship. Data analysis and box modeling results suggest that PAN formation was mostly contributed by VOC aging processes involving OH oxidation or photolysis rather than ozonolysis pathways. Heterogeneous reactions on aerosols have supplied key photochemical oxidants such as HONO, which produced OH radicals upon photolysis, promoting OVOC formation and thereby enhancing PAN production, explaining the observed PM2.5-OVOC-PAN intercorrelation. In turn, parts of these OVOCs might participate in the formation of secondary organic aerosol, further aggravating haze pollution as a feedback. Low wintertime temperatures enable the long-range transport of PAN to downwind regions, and how that will impact their oxidation capacity and photochemical pollution requires further assessment in future studies.
Assuntos
Poluentes Atmosféricos , Ozônio , Aerossóis , Poluentes Atmosféricos/análise , China , Monitoramento Ambiental , Ozônio/análise , Ácido Peracético/análogos & derivadosRESUMO
Oxidants are central species in the atmosphere, where they not only determine secondary particle formation but also impact human health and climate change. In general, they are unstable, highly reactive, and recyclable and have been studied in field observations, laboratory studies, and model simulations. The most widely investigated oxidants, such as OH radicals, O3, and Cl atom, HONO, NO3, N2O5, and Criegee Intermediates (CIs) have attracted more attention recently. Furthermore, secondary particles formed in the oxidations processes impact the particle physicochemical properties, such as hygroscopicity and optical properties and therefore impact the atmospheric radiation balance. Therefore, the newest investigation results of important oxidants (HONO, NO3, N2O5, and CIs) are reviewed in this manuscript, and the environmental effects of secondary particles formed through corresponding oxidation processes are also stated. Furthermore, some perspectives are further discussed in the article.
RESUMO
A distinctive kind of organic carbon aerosol that could absorb ultraviolet-visible radiation is called brown carbon (BrC), which has an important positive influence on radiative budget and climate change. In this work, we reported the absorption properties and potential source of BrC based on a seven-wavelength aethalometer in the winter of 2018-2019 at an urban site of Sanmenxia in Fenwei Plain in central China. Specifically, the mean value of BrC absorption coefficient was 59.6 ± 36.0 Mm-1 at 370 nm and contributed 37.7% to total absorption, which made a significant impact on visibility and regional environment. Absorption coefficients of BrC showed double-peak pattern, and BrC had shown small fluctuations under haze days compared with clean days. As for the sources of BrC, BrC absorption coefficients expressed strong correlations with element carbon aerosols and primary organic carbon aerosols, indicating that most of BrC originated from primary emissions. The linear correlations between trace metal elements (K, As, Fe, Mn, Zn, and Pb) and BrC absorption coefficients further referred that the major sources of BrC were primary emissions, like coal burning, biomass burning, and vehicle emissions. The moderate relationship between BrC absorption coefficients and secondary organic aerosols suggested that secondary production of BrC also played an important role. The 120 hr backward air mass trajectories analysis and concentration-weighted trajectories analysis were also used to investigate potential sources of BrC in and around this area, which inferred most parts of BrC were derived from local emissions.
Assuntos
Poluentes Atmosféricos , Carbono , Aerossóis/análise , Poluentes Atmosféricos/análise , Carbono/análise , China , Monitoramento Ambiental , Material Particulado/análiseRESUMO
Wintertime urban air pollution in many global megacities is characterised by episodic rapid increase in particulate matter concentrations associated with elevated relative humidity - so-called haze episodes, which have become characteristic of cities such as Beijing. Atmospheric chemistry within haze combines gas- and condensed-phase chemical processes, leading to the growth in secondary species such as sulphate aerosols. Here, we integrate observations of reactive gas phase species (HONO, OH, NOx) and time-resolved aerosol composition, to explore observational constraints on the mechanisms responsible for sulphate growth during the onset of haze events. We show that HONO abundance is dominated by established fast gas-phase photochemistry, but the consideration of the additional formation potentially associated with condensed-phase oxidation of S species by aqueous NO2 leading to NO2- production and hence HONO release, improves agreement between observed and calculated gas-phase HONO levels. This conclusion is highly dependent upon aerosol pH, ionic strength and particularly the parameterisation employed for S(iv) oxidation kinetics, for which an upper limit is derived.