Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Data ; 11(1): 740, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38972916

RESUMO

Soil hydraulic parameters are vital for precisely characterizing soil hydrological processes, which are critical indicators for regulating climate change effects on terrestrial ecosystems and governing feedbacks between water, energy, and carbon-nitrogen cycles. Although many studies have integrated comprehensive soil datasets, data quality and cost challenges result in data completeness deficiencies, especially for deep soil information. These gaps not only impede methodological endeavours but also constrain soil parameter-based ecosystem process studies spanning from local profiles to global earth system models. We established a soil dataset across the entire Yellow River Basin (YRB) (795,000 km2) using high-density in situ field sampling. This observation-based dataset contains records of soil texture (2924), bulk density (2798), saturated hydraulic conductivity (2782), and water retention curve parameters (1035) down to a maximum depth of 5 m. This dataset, which extends the recorded data range for deep soil hydraulic parameters, is valuable as a direct data resource for environmental, agronomical and hydrological studies in the YRB and regions with similar pedological and geological backgrounds around the world.

2.
Proc Natl Acad Sci U S A ; 121(15): e2322127121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38568978

RESUMO

Soil moisture (SM) is essential for sustaining services from Earth's critical zone, a thin-living skin spanning from the canopy to groundwater. In the Anthropocene epoch, intensive afforestation has remarkably contributed to global greening and certain service improvements, often at the cost of reduced SM. However, attributing the response of SM in deep soil to such human activities is a great challenge because of the scarcity of long-term observations. Here, we present a 37 y (1985 to 2021) analysis of SM dynamics at two scales across China's monsoon loess critical zone. Site-scale data indicate that land-use conversion from arable cropland to forest/grassland caused an 18% increase in SM deficit over 0 to 18 m depth (P < 0.01). Importantly, this SM deficit intensified over time, despite limited climate change influence. Across the Loess Plateau, SM storage in 0 to 10 m layer exhibited a significant decreasing trend from 1985 to 2021, with a turning point in 1999 when starting afforestation. Compared with SM storage before 1999, the relative contributions of climate change and afforestation to SM decline after 1999 were -8% and 108%, respectively. This emphasizes the pronounced impacts of intensifying land-use conversions as the principal catalyst of SM decline. Such a decline shifts 18% of total area into an at-risk status, mainly in the semiarid region, thereby threatening SM security. To mitigate this risk, future land management policies should acknowledge the crucial role of intensifying land-use conversions and their interplay with climate change. This is imperative to ensure SM security and sustain critical zone services.

3.
Mol Carcinog ; 57(6): 807-814, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29500880

RESUMO

Triptolide is an active component from a Chinese herb, Tripterygium wilfordii which has been applied for treating immune-related diseases over centuries. Recently, it was reported that a variety of cancer cell lines could be sensitized to DNA-damage based chemotherapy drugs in combination with Triptolide treatment. In the present study, we show that a short time exposure (3 h) to Triptolide, which did not trigger apoptosis, could specifically increase breast cancer cells sensitivity to Doxorubicin rather than other chemotherapy drugs including Paclitaxel, Fluorouracil, and Mitomycin C. Further studies revealed Triptolide downregulated ATM expression and inhibited DNA damage response to DNA double- strand breaks. Moreover, the chemosensitization effect to Doxorubicin from Triptolide was attenuated by overexpression of ATM in breast cancer cells. Our findings suggest that Triptolide specifically chemosensitizes breast cancer cells to Doxorubicin prior to apoptosis initiation through downregulating ATM expression and inhibiting DNA damage response.


Assuntos
Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Dano ao DNA , Diterpenos/farmacologia , Doxorrubicina/farmacologia , Fenantrenos/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Compostos de Epóxi/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7
4.
J Mol Biol ; 366(5): 1603-14, 2007 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-17224163

RESUMO

Phosphoribosylaminoimidazole carboxylase/phosphoribosylaminoimidazole succinocarboxamide synthetase (PAICS) is an important bifunctional enzyme in de novo purine biosynthesis in vertebrate with both 5-aminoimidazole ribonucleotide carboxylase (AIRc) and 4-(N-succinylcarboxamide)-5-aminoimidazole ribonucleotide synthetase (SAICARs) activities. It becomes an attractive target for rational anticancer drug design, since rapidly dividing cancer cells rely heavily on the purine de novo pathway for synthesis of adenine and guanine, whereas normal cells favor the salvage pathway. Here, we report the crystal structure of human PAICS, the first in the entire PAICS family, at 2.8 A resolution. It revealed that eight PAICS subunits, each composed of distinct AIRc and SAICARs domains, assemble a compact homo-octamer with an octameric-carboxylase core and four symmetric periphery dimers formed by synthetase domains. Based on structural comparison and functional complementation analyses, the active sites of SAICARs and AIRc were identified, including a putative substrate CO(2)-binding site. Furthermore, four symmetry-related, separate tunnel systems in the PAICS octamer were found that connect the active sites of AIRc and SAICARs. This study illustrated the octameric nature of the bifunctional enzyme. Each carboxylase active site is formed by structural elements from three AIRc domains, demonstrating that the octamer structure is essential for the carboxylation activity. Furthermore, the existence of the tunnel system implies a mechanism of intermediate channeling and suggests that the quaternary structure arrangement is crucial for effectively executing the sequential reactions. In addition, this study provides essential structural information for designing PAICS-specific inhibitors for use in cancer chemotherapy.


Assuntos
Carboxiliases/química , Purinas/biossíntese , Sequência de Aminoácidos , Sítios de Ligação , Carboxiliases/genética , Carboxiliases/metabolismo , Cristalografia por Raios X , Escherichia coli/genética , Teste de Complementação Genética , Humanos , Luz , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Mutagênese Sítio-Dirigida , Mutação Puntual , Biossíntese de Proteínas , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espalhamento de Radiação , Homologia de Sequência de Aminoácidos , Análise Espectral Raman , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA