RESUMO
The exoerythrocytic stage of Plasmodium infection is a critical window for prophylactic intervention. Using genome-wide dual RNA sequencing of flow-sorted infected and uninfected hepatoma cells we show that the human mucosal immunity gene, mucin-13 (MUC13), is strongly upregulated during Plasmodium exoerythrocytic hepatic-stage infection. We confirm MUC13 transcript increases in hepatoma cell lines and primary hepatocytes. In immunofluorescence assays, host MUC13 protein expression distinguishes infected cells from adjacent uninfected cells and shows similar colocalization with parasite biomarkers such as UIS4 and HSP70. We further show that localization patterns are species independent, marking both P. berghei and P. vivax infected cells, and that MUC13 can be used to identify compounds that inhibit parasite replication in hepatocytes. This data provides insights into host-parasite interactions in Plasmodium infection, and demonstrates that a component of host mucosal immunity is reprogrammed during the progression of infection.
Assuntos
Imunidade nas Mucosas/fisiologia , Malária/imunologia , Malária/metabolismo , Mucinas/metabolismo , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/parasitologia , Linhagem Celular , Células Cultivadas , Proteínas de Choque Térmico HSP70/metabolismo , Hepatócitos/parasitologia , Hepatócitos/patologia , Interações Hospedeiro-Parasita , Humanos , Imunidade nas Mucosas/genética , Neoplasias Hepáticas/imunologia , Plasmodium berghei/patogenicidadeRESUMO
To develop new drugs and vaccines for malaria elimination, it will be necessary to discover biological interventions, including small molecules that act against Plasmodium vivax exoerythrocytic forms. However, a robust in vitro culture system for P. vivax is still lacking. Thus, to study exoerythrocytic forms, researchers must have simultaneous access to fresh, temperature-controlled patient blood samples, as well as an anopheline mosquito colony. In addition, researchers must rely on native mosquito species to avoid introducing a potentially dangerous invasive species into a malaria-endemic region. Here, we report an in vitro culture system carried out on site in a malaria-endemic region for liver stage parasites of P. vivax sporozoites obtained from An. darlingi, the main malaria vector in the Americas. P. vivax sporozoites were obtained by dissection of salivary glands from infected An. darlingi mosquitoes and purified by Accudenz density gradient centrifugation. HC04 liver cells were exposed to P. vivax sporozoites and cultured up to 9 days. To overcome low P. vivax patient parasitemias, potentially lower mosquito vectorial capacity, and humid, nonsterile environmental conditions, a new antibiotic cocktail was included in tissue culture to prevent contamination. Culturing conditions supported exoerythrocytic (EEF) P. vivax liver stage growth up to 9 days and allowed for maturation into intrahepatocyte merosomes. Some of the identified small forms were resistant to atovaquone (1 µM) but sensitive to the phosphatidylinositol 4-kinase inhibitor, KDU691 (1 µM). This study reports a field-accessible EEF production process for drug discovery in a malaria-endemic site in which viable P. vivax sporozoites are used for drug studies using hepatocyte infection. Our data demonstrate that the development of meaningful, field-based resources for P. vivax liver stage drug screening and liver stage human malaria experimentation in the Amazon region is feasible.
Assuntos
Técnicas de Cultura de Células/métodos , Hepatócitos/parasitologia , Parasitologia/métodos , Plasmodium vivax/crescimento & desenvolvimento , Animais , Anopheles/parasitologia , Linhagem Celular , Humanos , Peru , Plasmodium vivax/isolamento & purificação , Glândulas Salivares/parasitologiaRESUMO
In vitro culture of Plasmodium vivax liver stages underlies key understandings of the fundamental biology of this parasite, particularly the latent, hyponozoite stage, toward drug and vaccine development. Here, we report systematic production of Plasmodium vivax sporozoites in colonized Anopheles darlingi mosquitoes in the Peruvian Amazon. Human subject-derived P. vivax-infected blood was fed to Anopheles darlingi females using standard membrane feedings assays. Optimizing A. darlingi infection and sporozoite production included replacement of infected patient donor serum with naïve donor serum, comparing anticoagulants in processing blood samples, and addition of penicillin-streptomycin and ATP to infectious blood meals. Replacement of donor serum by naïve serum in the P. vivax donor blood increased oocysts in the mosquito midgut, and heparin, as anticoagulant, was associated with the highest sporozoite yields. Maintaining blood-fed mosquitoes on penicillin-streptomycin in sugar significantly extended mosquito survival which enabled greater sporozoite yield. In this study, we have shown that a robust P. vivax sporozoite production is feasible in a malaria-endemic setting where infected subjects and a stable A. darlingi colony are brought together, with optimized laboratory conditions.
Assuntos
Anopheles/parasitologia , Parasitologia/métodos , Plasmodium vivax/crescimento & desenvolvimento , Esporozoítos/crescimento & desenvolvimento , Animais , Feminino , Trato Gastrointestinal/parasitologia , Peru , Plasmodium vivax/isolamento & purificação , Esporozoítos/isolamento & purificaçãoRESUMO
Anopheles darlingi, the main malaria vector in the Neotropics, has been considered to be highly anthropophilic. However, many behavioral aspects of this species remain unknown, such as the range of blood-meal sources. Barrier screens were used to collect resting Anopheles darlingi mosquitoes from 2013 to 2015 in three riverine localities (Lupuna, Cahuide and Santa Emilia) in Amazonian Peru. Overall, the Human Blood Index (HBI) ranged from 0.58-0.87, with no significant variation among years or sites. Blood-meal analysis revealed that humans are the most common blood source, followed by avian hosts (Galliformes-chickens and turkeys), and human/Galliforme mixed-meals. The Forage Ratio and Selection Index both show a strong preference for Galliformes over humans in blood-fed mosquitoes. Our data show that 30% of An. darlingi fed on more than one host, including combinations of dogs, pigs, goats and rats. There appears to be a pattern of host choice in An. darlingi, with varying proportions of mosquitoes feeding only on humans, only on Galliformes and some taking mixed-meals of blood (human plus Galliforme), which was detected in the three sites in different years, indicating that there could be a structure to these populations based on blood-feeding preferences. Mosquito age, estimated in two localities, Lupuna and Cahuide, ranged widely between sites and years. This variation may reflect the range of local environmental factors that influence longevity or possibly potential changes in the ability of the mosquito to transmit the parasite. Of 6,204 resting An. darlingi tested for Plasmodium infection, 0.42% were infected with P. vivax. This study provides evidence for the first time of the usefulness of barrier screens for the collection of blood-fed resting mosquitoes to calculate the Human Blood Index (HBI) and other blood-meal sources in a neotropical malaria endemic setting.