Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Clin Cancer Res ; 24(14): 3433-3446, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29636357

RESUMO

Purpose: Although high glucocorticoid receptor (GR) expression in early-stage estrogen receptor (ER)-negative breast cancer is associated with shortened relapse-free survival (RFS), how associated GR transcriptional activity contributes to aggressive breast cancer behavior is not well understood. Using potent GR antagonists and primary tumor gene expression data, we sought to identify a tumor-relevant gene signature based on GR activity that would be more predictive than GR expression alone.Experimental Design: Global gene expression and GR ChIP-sequencing were performed to identify GR-regulated genes inhibited by two chemically distinct GR antagonists, mifepristone and CORT108297. Differentially expressed genes from MDA-MB-231 cells were cross-evaluated with significantly expressed genes in GR-high versus GR-low ER-negative primary breast cancers. The resulting subset of GR-targeted genes was analyzed in two independent ER-negative breast cancer cohorts to derive and then validate the GR activity signature (GRsig).Results: Gene expression pathway analysis of glucocorticoid-regulated genes (inhibited by GR antagonism) revealed cell survival and invasion functions. GR ChIP-seq analysis demonstrated that GR antagonists decreased GR chromatin association for a subset of genes. A GRsig that comprised n = 74 GR activation-associated genes (also reversed by GR antagonists) was derived from an adjuvant chemotherapy-treated Discovery cohort and found to predict probability of relapse in a separate Validation cohort (HR = 1.9; P = 0.012).Conclusions: The GRsig discovered herein identifies high-risk ER-negative/GR-positive breast cancers most likely to relapse despite administration of adjuvant chemotherapy. Because GR antagonism can reverse expression of these genes, we propose that addition of a GR antagonist to chemotherapy may improve outcome for these high-risk patients. Clin Cancer Res; 24(14); 3433-46. ©2018 AACR.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Regulação Neoplásica da Expressão Gênica , Receptores de Glucocorticoides/antagonistas & inibidores , Receptores de Glucocorticoides/metabolismo , Transcriptoma , Animais , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/mortalidade , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Modelos Animais de Doenças , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Prognóstico , Regiões Promotoras Genéticas , RNA Interferente Pequeno/genética , Receptores de Estrogênio/metabolismo , Análise de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Mol Cancer Ther ; 16(8): 1680-1692, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28428441

RESUMO

Increased glucocorticoid receptor (GR) expression and activity following androgen blockade can contribute to castration-resistant prostate cancer (CRPC) progression. Therefore, we hypothesized that GR antagonism will have therapeutic benefit in CRPC. However, the FDA-approved nonselective, steroidal GR antagonist, mifepristone, lacks GR specificity, reducing its therapeutic potential. Here, we report that two novel nonsteroidal and highly selective GR modulators (SGRM), CORT118335 and CORT108297, have the ability to block GR activity in prostate cancer and slow CRPC progression. In contrast to mifepristone, these novel SGRMs did not affect androgen receptor (AR) signaling, but potently inhibited GR transcriptional activity. Importantly, SGRMs decreased GR-mediated tumor cell viability following AR blockade. In vivo, SGRMs significantly inhibited CRPC progression in high GR-expressing, but not in low GR-expressing xenograft models. Transcriptome analysis following AR blockade and GR activation revealed that these SGRMs block GR-mediated proliferative gene expression pathways. Furthermore, GR-regulated proliferation-associated genes AKAP12, FKBP5, SGK1, CEBPD, and ZBTB16 are inhibited by CORT108297 treatment in vivo Together, these data suggest that GR-selective nonsteroidal SGRMs potently inhibit GR activity and prostate cancer growth despite AR pathway inhibition, demonstrating the therapeutic potential of SGRMs in GR-expressing CRPC. Mol Cancer Ther; 16(8); 1680-92. ©2017 AACR.


Assuntos
Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/patologia , Receptores de Glucocorticoides/metabolismo , Bibliotecas de Moléculas Pequenas/uso terapêutico , Animais , Benzamidas , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos Nus , Nitrilas , Feniltioidantoína/análogos & derivados , Feniltioidantoína/farmacologia , Feniltioidantoína/uso terapêutico , Neoplasias de Próstata Resistentes à Castração/genética , Receptores Androgênicos/metabolismo , Transdução de Sinais , Bibliotecas de Moléculas Pequenas/farmacologia , Transcrição Gênica
3.
Mol Cancer Res ; 14(8): 707-19, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27141101

RESUMO

UNLABELLED: In estrogen receptor (ER)-negative breast cancer, high tumor glucocorticoid receptor (GR) expression has been associated with a relatively poor outcome. In contrast, using a meta-analysis of several genomic datasets, here we find that tumor GR mRNA expression is associated with improved ER(+) relapse-free survival (RFS; independently of progesterone receptor expression). To understand the mechanism by which GR expression is associated with a better ER(+) breast cancer outcome, the global effect of GR-mediated transcriptional activation in ER(+) breast cancer cells was studied. Analysis of GR chromatin immunoprecipitation followed by high-throughput sequencing in ER(+)/GR(+) MCF-7 cells revealed that upon coactivation of GR and ER, GR chromatin association became enriched at proximal promoter regions. Furthermore, following ER activation, increased GR chromatin association was observed at ER, FOXO, and AP1 response elements. In addition, ER associated with GR response elements, suggesting that ER and GR interact in a complex. Coactivation of GR and ER resulted in increased expression (relative to ER activation alone) of transcripts that encode proteins promoting cellular differentiation (e.g., KDM4B, VDR) and inhibiting the Wnt signaling pathway (IGFBP4). Finally, expression of these individual prodifferentiation genes was associated with significantly improved RFS in ER(+) breast cancer patients. Together, these data suggest that the coexpression and subsequent activity of tumor cell GR and ER contribute to the less aggressive natural history of early-stage breast cancer by coordinating the altered expression of genes favoring differentiation. IMPLICATIONS: The interaction between ER and GR activity highlights the importance of context-dependent nuclear receptor function in cancer. Mol Cancer Res; 14(8); 707-19. ©2016 AACR.


Assuntos
Neoplasias da Mama/genética , Receptores de Estrogênio/metabolismo , Receptores de Glucocorticoides/metabolismo , Neoplasias da Mama/patologia , Diferenciação Celular , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Receptores de Estrogênio/genética , Receptores de Glucocorticoides/genética , Elementos de Resposta , Transdução de Sinais , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA