RESUMO
One of the most important physiological challenges animals had to overcome during terrestrialization (i.e., the transition from sea to land) was water loss, which alters their osmotic and hydric homeostasis. Aquaporins are a superfamily of membrane water transporters heavily involved in osmoregulatory processes. Their diversity and evolutionary dynamics in most animal lineages remain unknown, hampering our understanding of their role in marine-terrestrial transitions. Here, we interrogated aquaporin gene repertoire evolution across the main terrestrial animal lineages. We annotated aquaporin-coding genes in genomic data from 458 species from seven animal phyla where terrestrialization episodes occurred. We then explored aquaporin gene evolutionary dynamics to assess differences between terrestrial and aquatic species through phylogenomics and phylogenetic comparative methods. Our results revealed parallel aquaporin-coding gene duplications during the ecological transition from marine to nonmarine environments (e.g., brackish, freshwater and terrestrial), rather than from aquatic to terrestrial ones, with some notable duplications in ancient lineages. In contrast, we also recovered a significantly lower number of superaquaporin genes in terrestrial arthropods, suggesting that more efficient oxygen homeostasis in land arthropods might be linked to a reduction in this type of aquaporin. Our results thus indicate that aquaporin-coding gene duplication and loss might have been one of the key steps towards the evolution of osmoregulation across animals, facilitating the "out of the sea" transition and ultimately the colonization of land.
Assuntos
Aquaporinas , Artrópodes , Animais , Filogenia , Ecossistema , Aquaporinas/genética , Água , Evolução BiológicaRESUMO
Understanding what drives the existing phenotypic variability has been a major topic of interest for biologists for generations. However, the study of the phenotype may not be straightforward. Indeed, organisms may be interpreted as composite objects, comprising different ecophenotypic traits, which are neither necessarily independent from each other nor do they respond to the same evolutionary pressures. For this reason, a deep biological understanding of the focal organism is essential for any morphological analysis. The spider genus Dysdera provides a particularly well-suited system for setting up protocols for morphological analyses that encompass a suit of morphological structures in any nonmodel system. This genus has undergone a remarkable diversification in the Canary Islands, where different species perform different ecological roles, exhibiting different levels of trophic specialization or troglomorphic adaptations, which translate into a remarkable interspecific morphological variability. Here, we seek to develop a broad guide, of which morphological characters must be considered, to study the effect of different ecological pressures in spiders and propose a general workflow that will be useful whenever researchers set out to investigate variation in the body plans of different organisms, with data sets comprising a set of morphological traits. We use geometric morphometric methods to quantify variation in different body structures, all of them with diverse phenotypic modifications in their chelicera, prosoma, and legs. We explore the effect of analyzing different combined landmark (LM) configurations of these characters and the degree of morphological integration that they exhibit. Our results suggest that different LM configurations of each of these body parts exhibit a higher degree of integration compared to LM configurations from different structures and that the analysis of each of these body parts captures different aspects of morphological variation, potentially related to different ecological factors.
Assuntos
Aranhas , Animais , Aranhas/anatomia & histologia , Filogenia , Evolução Biológica , FenótipoRESUMO
Secondary contact in close relatives can result in hybridization and the admixture of previously isolated gene pools. However, after an initial period of hybridization, reproductive isolation can evolve through different processes and lead to the interruption of gene flow and the completion of the speciation process. Omocestus minutissimus and O. uhagonii are two closely related grasshoppers with partially overlapping distributions in the Central System mountains of the Iberian Peninsula. To analyse spatial patterns of historical and/or contemporary hybridization between these two taxa and understand how species boundaries are maintained in the region of secondary contact, we sampled sympatric and allopatric populations of the two species and obtained genome-wide single nucleotide polymorphism data using a restriction site-associated DNA sequencing approach. We used Bayesian clustering analyses to test the hypothesis of contemporary hybridization in sympatric populations and employed a suite of phylogenomic approaches and a coalescent-based simulation framework to evaluate alternative hypothetical scenarios of interspecific gene flow. Our analyses rejected the hypothesis of contemporary hybridization but revealed past introgression in the area where the distributions of the two species overlap. Overall, these results point to a scenario of historical gene flow after secondary contact followed by the evolution of reproductive isolation that currently prevents hybridization among sympatric populations.
Assuntos
Evolução Molecular , Especiação Genética , Gafanhotos , Hibridização Genética , Animais , Teorema de Bayes , Fluxo Gênico , Genômica , Gafanhotos/classificação , Gafanhotos/genética , Polimorfismo de Nucleotídeo Único , EspanhaRESUMO
Taxonomy has traditionally relied on morphological and ecological traits to interpret and classify biological diversity. Over the last decade, technological advances and conceptual developments in the field of molecular ecology and systematics have eased the generation of genomic data and changed the paradigm of biodiversity analysis. Here we illustrate how traditional taxonomy has led to species designations that are supported neither by high throughput sequencing data nor by the quantitative integration of genomic information with other sources of evidence. Specifically, we focus on Omocestus antigai and Omocestus navasi, two montane grasshoppers from the Pyrenean region that were originally described based on quantitative phenotypic differences and distinct habitat associations (alpine vs. Mediterranean-montane habitats). To validate current taxonomic designations, test species boundaries, and understand the factors that have contributed to genetic divergence, we obtained phenotypic (geometric morphometrics) and genome-wide SNP data (ddRADSeq) from populations covering the entire known distribution of the two taxa. Coalescent-based phylogenetic reconstructions, integrative Bayesian model-based species delimitation, and landscape genetic analyses revealed that populations assigned to the two taxa show a spatial distribution of genetic variation that do not match with current taxonomic designations and is incompatible with ecological/environmental speciation. Our results support little phenotypic variation among populations and a marked genetic structure that is mostly explained by geographic distances and limited population connectivity across the abrupt landscapes characterizing the study region. Overall, this study highlights the importance of integrative approaches to identify taxonomic units and elucidate the evolutionary history of species.
Assuntos
Genômica , Gafanhotos/classificação , Gafanhotos/genética , Animais , Teorema de Bayes , Variação Genética , Genótipo , Geografia , Gafanhotos/anatomia & histologia , Fenótipo , Filogenia , Análise de Componente Principal , Especificidade da EspécieRESUMO
BACKGROUND: A large scale semi-quantitative biodiversity assessment was conducted in white oak woodlands in areas included in the Spanish Network of National Parks, as part of a project aimed at revealing biogeographic patterns and identify biodiversity drivers. The semi-quantitative COBRA sampling protocol was conducted in sixteen 1-ha plots across six national parks using a nested design. All adult specimens were identified to species level based on morphology. Uncertain delimitations and identifications due to either limited information of diagnostic characters or conflicting taxonomy were further investigated using DNA barcode information. NEW INFORMATION: We identified 376 species belonging to 190 genera in 39 families, from the 8,521 adults found amongst the 20,539 collected specimens. Faunistic results include the discovery of 7 new species to the Iberian Peninsula, 3 new species to Spain and 11 putative new species to science. As largely expected by environmental features, the southern parks showed a higher proportion of Iberian and Mediterranean species than the northern parks, where the Palearctic elements were largely dominant. The analysis of approximately 3,200 DNA barcodes generated in the present study, corroborated and provided finer resolution to the morphologically based delimitation and identification of specimens in some taxonomically challenging families. Specifically, molecular data confirmed putative new species with diagnosable morphology, identified overlooked lineages that may constitute new species, confirmed assignment of specimens of unknown sexes to species and identified cases of misidentifications and phenotypic polymorphisms.
RESUMO
Molecular gut-content analysis has revolutionized the study of food webs and feeding interactions, allowing the detection of prey DNA within the gut of many organisms. However, successful prey detection is a challenging procedure in which many factors affect every step, starting from the DNA extraction process. Spiders are liquid feeders with branched gut diverticula extending into their legs and throughout the prosoma, thus digestion takes places in different parts of the body and simple gut dissection is not possible. In this study, we investigated differences in prey detectability in DNA extracts from different parts of the spider´s body: legs, prosoma and opisthosoma, using prey-specific PCR and metabarcoding approaches. We performed feeding trials with the woodlouse hunter spider Dysdera verneaui Simon, 1883 (Dysderidae) to estimate the time at which prey DNA is detectable within the predator after feeding. Although we found that all parts of the spider body are suitable for gut-content analysis when using prey-specific PCR approach, results based on metabarcoding suggested the opisthosoma is optimal for detection of predation in spiders because it contained the highest concentration of prey DNA for longer post feeding periods. Other spiders may show different results compared to D. verneaui, but given similarities in the physiology and digestion in different families, it is reasonable to assume this to be common across species and this approach having broad utility across spiders.