Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(19): 28578-28593, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38558333

RESUMO

The application of perovskite lanthanum ferrite (LaFeO3) as a photocatalyst has shown significant potential in the removal of persistent organic and inorganic contaminants. In the present research, LaFeO3 and various composites consisting of LaFeO3 and TiO2 were prepared. The photocatalytic efficiency of the produced catalysts was assessed by measuring their effectiveness in degrading thiamethoxam, a pesticide belonging to the second generation of neonicotinoids. Experimental investigations were carried out to examine the impact of various factors on the degradation process, including variables like concentration of thiamethoxam, catalyst amount, and pH level. The produced catalysts were characterized by various techniques, including field emission scanning electron microscopy (FESEM), Brunauer-Emmett-Teller (BET) analysis, X-ray diffraction (XRD), ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS), photoluminescence (PL), and X-ray photoelectron spectroscopy (XPS). The highest degradation rates were observed when using the synthesized catalyst, 1% LaFeO3/TiO2 (LFTO1), under both UV-C and direct sunlight conditions. This performance outperformed TiO2 and bare LaFeO3. When exposed to ultraviolet (UV-C) radiation at an intensity of 15 W m-2 and under neutral pH conditions, LFTO1 achieved approximately 97% degradation, while under direct sunlight, the LFTO1 photocatalyst exhibited a degradation rate of 79% within a 120-min reaction period. The enhanced activity of LFTO1 could be attributed to its increased surface area, reduced bandgap, and lower electron-hole recombination. The investigation of reaction kinetics showed that the degradation of thiamethoxam followed a pseudo-first-order rate law. Furthermore, LFTO1 can be employed up to 5 times without experiencing any loss in its catalytic activity, thus confirming its long-term utility.


Assuntos
Tiametoxam , Titânio , Titânio/química , Tiametoxam/química , Catálise , Compostos Férricos/química , Lantânio/química , Neonicotinoides/química , Compostos de Cálcio/química
2.
Int J Biol Macromol ; 258(Pt 2): 129005, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38159697

RESUMO

Lignin was functionalised by crosslinking with hexamethylene diisocyanate (HDI) through the heterogenous reaction in the solvent dimethyl sulfoxide for preferential improvement in the mechanical properties of composites. The successful synthesis of lignin modified with HDI was confirmed by the instrumental analyses, e.g., FTIR, XPS, and FESEM. The incorporation of optimum crosslinked lignin in polylactic acid (PLA) matrix was systematically evaluated on the basis of their thermal stability, mechanical property, glass transition temperature (Tg), water contact angle, water absorption, and water permeability. The results displayed that incorporation of fillers had prominent effects on tensile tear strength, which could improve tensile strength up to 231 % and elongation at break up to 53 % due to the good interface compatibility between PLA and modified lignin. Further, with the inclusion of fillers, PLA composites exhibited higher crystallinity in comparison to neat PLA.


Assuntos
Lignina , Uretana , Poliésteres , Água , Carbamatos
3.
J Environ Manage ; 325(Pt B): 116550, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36347188

RESUMO

Owing to the tremendous increase of chemicals for agricultural practices, the quality of water has degraded significantly and requires inevitable attention. With this in mind, present work aims at treating Paraquat (PQ) contaminated water using Fe containing industrial waste as a catalyst via photo-Fenton treatment. Utilizing the industrially generated Fe rich waste by-products i.e., Fly ash (FA), Foundry sand (FS), Red mud (RM), and Blast sand (BS) as catalysts marks the novelty of the work since this idea of using waste for treating waste serves the dual purpose of environment remediation:first by treating wastewater and second by resolving the issue of solid waste disposal. In the present study, 25 mg/L PQ was subjected to both UV and solar radiations in the presence of FeSO4, FA, FS, RM, and BS as catalysts. The presence of Fe in the catalysts was verified using analytical techniques namely FTIR, FESEM-EDX, and their XRD was also analyzed. The system was further optimized for various parameters and results indicated maximum PQ degradation under UV radiations was attained in the order FeSO4 (73%) > BS (65%) > FS (46%) > RM (37%) > FA (14%) within 60 min which significantly increased with introduction of solar radiations to 83% for Fe salt and 76% for BS justifying the potential of using waste for treating waste. Further, to enhance the real-life utilization of industrial waste, Fe2O3/BS heterojunction (Fe-BS) was synthesized which along with leading to 88% degradation of PQ, also showed 82% COD removal indicating that the catalyst not only degrades the pollutant but also converts it into a lower toxic form. Further, the intermediates formed during the process were analyzed using LCMS.


Assuntos
Resíduos Industriais , Poluentes Químicos da Água , Ferro , Eliminação de Resíduos Líquidos/métodos , Paraquat , Areia , Peróxido de Hidrogênio , Águas Residuárias , Água , Oxirredução
4.
World J Microbiol Biotechnol ; 37(2): 33, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33469843

RESUMO

Among the various pharmaceutical pollutants, diclofenac sodium (DFS), a widely prescribed non-steroid anti-inflammatory drug is detected in the aquatic environment at concentrations which can be harmful to living organisms. Present study illustrates the isolation and characterization of strain Klebsiella pneumoniae WAH1 from activated sludge and its ability to degrade DFS as sole source of carbon and energy. The growth and degradation capacity of K. pneumoniae WAH1 under different conditions of pH, temperature, rotation speed, and inoculum age were evaluated using optical density and liquid chromatography-mass spectroscopy (LCMS). The results show that K. pneumoniae WAH1 can grow well with DFS as its sole source of carbon and degrade 79.14% of DFS (10 mg L-1) within 72 h. Based on chemical structure of intermediates detected through LCMS, it is inferred that degradation pathway advanced by hydroxylation, decarboxylation, and dechlorination reactions. Toxicity studies revealed the non-toxic nature of the end-products of DFS degradation after 72 h. The findings suggest that K. pneumoniae WAH1 has an excellent potential for bioremediation of DFS in industrial wastewaters.


Assuntos
Diclofenaco/química , Klebsiella pneumoniae/isolamento & purificação , Esgotos/microbiologia , Biodegradação Ambiental , Carbono/química , Cromatografia Líquida , Descarboxilação , Concentração de Íons de Hidrogênio , Hidroxilação , Klebsiella pneumoniae/classificação , Klebsiella pneumoniae/crescimento & desenvolvimento , Espectrometria de Massas , Esgotos/química , Temperatura
5.
Environ Technol ; 39(4): 424-432, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28278085

RESUMO

The fixed-bed photocatalytic degradation of fungicide carbendazim using catalyst-coated spherical cement beads has been investigated. Thirty beads with optimum size 13 mm along with 0.3 gL-1 H2O2 with an initial concentration of carbendazim of 10 mgL-1 were the optimized conditions for better degradation. The reduction in COD and total organic carbon along with the generation of nitrite and nitrate ions under the optimized conditions confirms the complete mineralization of compound. The suggested degradation pathway for carbendazim has also been proposed as intermediates formed during photodegradation were analyzed through gas chromatography-mass spectrometry. The coated cement beads were found to be durable even after 30 cycles as confirmed by scanning electron microscopy and energy dispersive spectroscopy analysis. Scale-up trails have also been carried out in a solar-baffled fixed-bed reactor for the degradation of pollutant to seek the commercial viability of the technique.


Assuntos
Benzimidazóis/química , Carbamatos/química , Fungicidas Industriais/química , Fotólise , Modelos Químicos , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA