Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ann Clin Transl Neurol ; 10(7): 1239-1253, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37283238

RESUMO

OBJECTIVE: Brain organoids are miniaturized in vitro brain models generated from pluripotent stem cells, which resemble full-sized brain more closely than conventional two-dimensional cell cultures. Although brain organoids mimic the human brain's cell-to-cell network interactions, they generally fail to faithfully recapitulate cell-to-matrix interactions. Here, an engineered framework, called an engineered extracellular matrix (EECM), was developed to provide support and cell-to-matrix interactions to developing brain organoids. METHODS: We generated brain organoids using EECMs comprised of human fibrillar fibronectin supported by a highly porous polymer scaffold. The resultant brain organoids were characterized by immunofluorescence microscopy, transcriptomics, and proteomics of the cerebrospinal fluid (CSF) compartment. RESULTS: The interstitial matrix-mimicking EECM enhanced neurogenesis, glial maturation, and neuronal diversity from human embryonic stem cells versus conventional protein matrix (Matrigel). Additionally, EECMs supported long-term culture, which promoted large-volume organoids containing over 250 µL of CSF. Proteomics analysis of the CSF found it superseded previous brain organoids in protein diversity, as indicated by 280 proteins spanning 500 gene ontology pathways shared with adult CSF. INTERPRETATION: Engineered EECM matrices represent a major advancement in neural engineering as they have the potential to significantly enhance the structural, cellular, and functional diversity that can be achieved in advanced brain models.


Assuntos
Organoides , Células-Tronco Pluripotentes , Adulto , Humanos , Organoides/metabolismo , Matriz Extracelular , Encéfalo , Neurogênese
2.
Integr Biol (Camb) ; 11(2): 41-52, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30809641

RESUMO

Human embryonic stem cells subjected to a one-time uniaxial stretch for as short as 30-min on a flexible substrate coated with Matrigel experienced rapid and irreversible nuclear-to-cytoplasmic translocation of NANOG and OCT4, but not Sox2. Translocations were directed by intracellular transmission of biophysical signals from cell surface integrins to nuclear CRM1 and were independent of exogenous soluble factors. On E-CADHERIN-coated substrates, presumably with minimal integrin engagement, mechanical strain-induced rapid nuclear-to-cytoplasmic translocation of the three transcription factors. These findings might provide fundamental insights into early developmental processes and may facilitate mechanotransduction-mediated bioengineering approaches to influencing stem cell fate determination.

3.
Adv Biosyst ; 3(10): e1900064, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-32648720

RESUMO

Mechanical forces play important roles in human embryonic stem cell (hESC) differentiation. To investigate the impact of dynamic mechanical forces on neural induction of hESCs, this study employs acoustic tweezing cytometry (ATC) to apply cyclic forces/strains to hESCs by actuating integrin-bound microbubbles using ultrasound pulses. Accelerated neural induction of hESCs is demonstrated as the result of combined action of ATC and neural induction medium (NIM). Specifically, application of ATC for 30 min followed by culture in NIM upregulates neuroecdoderm markers Pax6 and Sox1 as early as 6 h after ATC, and induces neural tube-like rosette formation at 48 h after ATC. In contrast, no changes are observed in hESCs cultured in NIM without ATC treatment. In the absence of NIM, ATC application decreases Oct4, but does not increase Pax6 and Sox1 expression, nor does it induce neural rossette formation. The effects of ATC are abolished by inhibition of FAK, myosin activity, and RhoA/ROCK signaling. Taken together, the results reveal a synergistic action of ATC and NIM as an integrated mechanobiology mechanism that requires both integrin-targeted cyclic forces and chemical factors for accelerated neural induction of hESCs.


Assuntos
Fenômenos Biomecânicos/fisiologia , Células-Tronco Embrionárias Humanas , Integrinas/metabolismo , Tubo Neural , Biomarcadores/análise , Biomarcadores/metabolismo , Separação Celular , Células Cultivadas , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Embrionárias Humanas/fisiologia , Humanos , Placa Neural/citologia , Tubo Neural/citologia , Tubo Neural/metabolismo , Tubo Neural/fisiologia
4.
Sci Rep ; 8(1): 12977, 2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30154528

RESUMO

Mechanical forces play critical roles in influencing human embryonic stem cell (hESC) fate. However, it remains largely uncharacterized how local mechanical forces influence hESC behavior in vitro. Here, we used an ultrasound (US) technique, acoustic tweezing cytometry (ATC), to apply targeted cyclic subcellular forces to hESCs via integrin-bound microbubbles (MBs). We found that ATC-mediated cyclic forces applied for 30 min to hESCs near the edge of a colony induced immediate global responses throughout the colony, suggesting the importance of cell-cell connection in the mechanoresponsiveness of hESCs to ATC-applied forces. ATC application generated increased contractile force, enhanced calcium activity, as well as decreased expression of pluripotency transcription factors Oct4 and Nanog, leading to rapid initiation of hESC differentiation and characteristic epithelial-mesenchymal transition (EMT) events that depend on focal adhesion kinase (FAK) activation and cytoskeleton (CSK) tension. These results reveal a unique, rapid mechanoresponsiveness and community behavior of hESCs to integrin-targeted cyclic forces.


Assuntos
Diferenciação Celular , Transição Epitelial-Mesenquimal , Células-Tronco Embrionárias Humanas/metabolismo , Mecanotransdução Celular , Ondas Ultrassônicas , Linhagem Celular , Citoesqueleto/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA