RESUMO
The ability to precisely engineer nanostructures underpins a wide range of applications in areas such as electronics, optics, and biomedical sciences. Here we present a novel approach for the growth of nanoparticle assemblies that leverages the unique properties of superfluid helium. Unlike viscous solvents at or near room temperature, superfluid helium provides an unperturbed and cold environment in which weak van der Waals interactions between molecular templates and metal atoms become significant and can define the spatial arrangement of nanoparticles. To demonstrate this concept, diol and porphyrin-based molecules are employed as templates to grow gold nanoparticle assemblies in superfluid helium droplets. After soft-landing on a solid surface to remove the helium, transmission electron microscopy (TEM) imaging shows the growth of gold nanoparticles at specific binding sites within the molecular templates where the interaction between gold atoms and the molecular template is at its strongest.
RESUMO
Block copolymers continue to attract a great deal of interest since they allow the formation of microphase-separated domains, useful for nanopatterning/templating. Herein, we present the drastic effect of microphase separation of a diblock copolymer on the electrical properties of polymer nanocomposites. Microphase-separated poly(styrene-b-2-ethylhexyl acrylate) (P(St-b-EHA)) block copolymers having different block lengths were synthesized and utilized as templates for multi-walled carbon nanotubes (MWCNTs). The percolation threshold of the films decreased from 0.46 to 0.19 vol% with decreasing styrene phase fraction. More importantly, we observed a non-linear and unique reduction in percolation threshold with transforming the phase into lamellar structures.
RESUMO
This study investigated the preventive health behaviors against the COVID-19 outbreak in Turkey according to the health belief model. The relationships between perceived susceptibility, severity, benefits, barriers, and preventive health behaviors were examined. 1401 participants consisting of 992 (70.8%) females and 409 (29.3%) males participated in an online survey. Independent groups t-test, hierarchical regression analysis and Process Macro were used for analyses. The findings showed that women perceived higher levels of severity of the disease and the benefits of preventive health behaviors than men. Men perceived more barriers to preventive health behaviors. The levels of anxiety and preventive health behaviors of women were higher than men. In regression analysis, male gender and perceived barriers were found as risk factors for preventive health behaviors. However, female gender, perceived severity, and benefits were protective factors for preventive health behaviors. People with low and moderate anxiety levels were more likely to comply with preventive health behaviors.
Assuntos
COVID-19 , Estudos Transversais , Feminino , Comportamentos Relacionados com a Saúde , Humanos , Masculino , Saúde Pública , SARS-CoV-2 , Inquéritos e QuestionáriosRESUMO
Various ligation processes have recently become a powerful tool in synthetic polymer chemistry. Herein, the use of a new photochemical ligation process as a versatile approach for the cross-linking polymerization, functionalization of polymer chain ends, and surface modification of various materials such as silica and graphene oxide, is demonstrated. The process is based on the formation of urethane linkages by the reaction of photochemically in situ generated isocyanates from benzoyl azides with hydroxyl moieties in the presence of organobase, bicyclo[2.2.2]-1,4-diazaoctane (DABCO) under ambient conditions. The intermediates and obtained materials are characterized by NMR, FTIR, TGA, and TEM analyses. It is believed that this simple and efficient ligation process will expand future applications to fabricate complex macromolecular structures, biomaterials, and gels.
Assuntos
Azidas , Polímeros , Materiais Biocompatíveis , Estrutura Molecular , PolimerizaçãoRESUMO
Interest in all-inorganic halide perovskites has been increasing dramatically due to their high quantum yield, band gap tunability, and ease of fabrication in compositional and geometric diversity. In this study, we synthesized several hundreds of nanometer long and â¼4 nm thick CsPbBr 3 nanowires (NWs). They were then integrated into electrospun polyurethane (PU) fibers to examine the polarization behavior of the composite fiber assembly. Aligned electrospun fibers containing CsPbBr 3 NWs showed a remarkable increase in the degree of polarization from 0.17-0.30. This combination of NWs and PU fibers provides a promising composite material for various applications such as optoelectronic devices and solar cells.