Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Sci ; 13(14): 4019-4028, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35440978

RESUMO

Three fluorinated, hydrophobic initiators have been utilised for the synthesis of low molecular mass fluoro-poly(acrylic acid) heterotelechelic homopolymers to mimic high chi (χ)-low N diblock copolymers with ultrafine domains of sub-2 nm length scale. Polymers were obtained by a simple photoinduced copper(ii)-mediated reversible-deactivation radical polymerisation (Cu-RDRP) affording low molecular mass (<3 kDa) and low dispersity (D = 1.04-1.21) homopolymers. Heating/cooling ramps were performed on bulk samples (ca. 250 µm thick) to obtain thermodynamically stable nanomorpologies of lamellar (LAM) or hexagonally packed cylinders (HEX), as deduced by small-angle X-ray scattering (SAXS). Construction of the experimental phase diagram alongside a detailed theoretical model demonstrated typical rod-coil block copolymer phase behaviour for these fluoro-poly(acrylic acid) homopolymers, where the fluorinated initiator-derived segment acts as a rod and the poly(acrylic acid) as a coil. This work reveals that these telechelic homopolymers mimic high χ-ultralow N diblock copolymers and enables reproducible targeting of nanomorphologies with incredibly small, tunable domain size.

2.
Lab Chip ; 17(24): 4225-4230, 2017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-29124258

RESUMO

This paper describes the design, development and successful use of an on-chip goniometer for room-temperature macromolecular crystallography via acoustically induced rotations. We present for the first time a low cost, rate-tunable, acoustic actuator for gradual in-fluid sample reorientation about varying axes and its utilisation for protein structure determination on a synchrotron beamline. The device enables the efficient collection of diffraction data via a rotation method from a sample within a surface confined droplet. This method facilitates efficient macromolecular structural data acquisition in fluid environments for dynamical studies.

3.
Faraday Discuss ; 143: 29-46; discussion 81-93, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20334093

RESUMO

The key to the use of polymersomes as effective molecular delivery systems is in the ability to design processing routes that can efficiently encapsulate the molecular payload. We have evaluated various surface rehydration mechanisms for encapsulation, in each case characterizing the morphologies formed using DLS and confocal microscopy as well as determining the encapsulation efficiency for the hydrophilic dye Rhodamine B. In contrast to bulk methods, where the encapsulation efficiencies are low, we find that higher efficiencies can be obtained by the rehydration of thin films. We relate these results to the non-equilibrium mechanisms that underlie vesicle formation and discuss how an understanding of these mechanisms can help optimize encapsulation efficiencies. Our conclusion is that, even considering the good encapsulation efficiency, surface methods are still unsuitable for the massive scale-up needed when applied to commercial "mass market" molecular delivery scenarios. However, targeting more specialized applications for high value ingredients (like pharmaceuticals) might be more feasible.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA