Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Environ Health Perspect ; 130(5): 57011, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35617001

RESUMO

BACKGROUND: The effective reproductive number, Re, is a critical indicator to monitor disease dynamics, inform regional and national policies, and estimate the effectiveness of interventions. It describes the average number of new infections caused by a single infectious person through time. To date, Re estimates are based on clinical data such as observed cases, hospitalizations, and/or deaths. These estimates are temporarily biased when clinical testing or reporting strategies change. OBJECTIVES: We show that the dynamics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in wastewater can be used to estimate Re in near real time, independent of clinical data and without the associated biases. METHODS: We collected longitudinal measurements of SARS-CoV-2 RNA in wastewater in Zurich, Switzerland, and San Jose, California, USA. We combined this data with information on the temporal dynamics of shedding (the shedding load distribution) to estimate a time series proportional to the daily COVID-19 infection incidence. We estimated a wastewater-based Re from this incidence. RESULTS: The method to estimate Re from wastewater worked robustly on data from two different countries and two wastewater matrices. The resulting estimates were as similar to the Re estimates from case report data as Re estimates based on observed cases, hospitalizations, and deaths are among each other. We further provide details on the effect of sampling frequency and the shedding load distribution on the ability to infer Re. DISCUSSION: To our knowledge, this is the first time Re has been estimated from wastewater. This method provides a low-cost, rapid, and independent way to inform SARS-CoV-2 monitoring during the ongoing pandemic and is applicable to future wastewater-based epidemiology targeting other pathogens. https://doi.org/10.1289/EHP10050.


Assuntos
COVID-19 , SARS-CoV-2 , Número Básico de Reprodução , COVID-19/epidemiologia , Humanos , RNA Viral , Águas Residuárias
2.
Environ Sci (Camb) ; 8(4): 757-770, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35433013

RESUMO

Wastewater-based epidemiology has gained attention throughout the world for detection of SARS-CoV-2 RNA in wastewater to supplement clinical testing. Raw wastewater consists of small particles, or solids, suspended in liquid. Methods have been developed to measure SARS-CoV-2 RNA in the liquid and the solid fraction of wastewater, with some studies reporting higher concentrations in the solid fraction. To investigate this relationship further, six laboratories collaborated to conduct a study across five publicly owned treatment works (POTWs) where both primary settled solids obtained from primary clarifiers and raw wastewater influent samples were collected and quantified for SARS-CoV-2 RNA. Settled solids and influent samples were processed by participating laboratories using their respective methods and retrospectively paired based on date of collection. SARS-CoV-2 RNA concentrations, on a mass equivalent basis, were higher in settled solids than in influent by approximately three orders of magnitude. Concentrations in matched settled solids and influent were positively and significantly correlated at all five POTWs. RNA concentrations in both settled solids and influent were correlated to COVID-19 incidence rates in the sewersheds and thus representative of disease occurrence; the settled solids methods appeared to produce a comparable relationship between SARS-CoV-2 RNA concentration measurements and incidence rates across all POTWs. Settled solids and influent methods showed comparable sensitivity, N gene detection frequency, and calculated empirical incidence rate lower limits. Analysis of settled solids for SARS-CoV-2 RNA has the advantage of using less sample volume to achieve similar sensitivity to influent methods.

3.
Nat Commun ; 13(1): 2195, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35459277

RESUMO

Schizophrenia (SZ) is a psychiatric disorder with complex genetic risk dictated by interactions between hundreds of risk variants. Epigenetic factors, such as histone posttranslational modifications (PTMs), have been shown to play critical roles in many neurodevelopmental processes, and when perturbed may also contribute to the precipitation of disease. Here, we apply an unbiased proteomics approach to evaluate combinatorial histone PTMs in human induced pluripotent stem cell (hiPSC)-derived forebrain neurons from individuals with SZ. We observe hyperacetylation of H2A.Z and H4 in neurons derived from SZ cases, results that were confirmed in postmortem human brain. We demonstrate that the bromodomain and extraterminal (BET) protein, BRD4, is a bona fide 'reader' of H2A.Z acetylation, and further provide evidence that BET family protein inhibition ameliorates transcriptional abnormalities in patient-derived neurons. Thus, treatments aimed at alleviating BET protein interactions with hyperacetylated histones may aid in the prevention or treatment of SZ.


Assuntos
Células-Tronco Pluripotentes Induzidas , Esquizofrenia , Acetilação , Proteínas de Ciclo Celular/metabolismo , Cromatina , Histonas/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Proteínas Nucleares/metabolismo , Processamento de Proteína Pós-Traducional , Receptores de Superfície Celular/metabolismo , Esquizofrenia/genética , Fatores de Transcrição/metabolismo
4.
mSystems ; 6(5): e0082921, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34519528

RESUMO

A number of recent retrospective studies have demonstrated that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA concentrations in wastewater are associated with coronavirus disease 2019 (COVID-19) cases in the corresponding sewersheds. Implementing high-resolution, prospective efforts across multiple plants depends on sensitive measurements that are representative of COVID-19 cases, scalable for high-throughput analysis, and comparable across laboratories. We conducted a prospective study across eight publicly owned treatment works (POTWs). A focus on SARS-CoV-2 RNA in solids enabled us to scale up our measurements with a commercial lab partner. Samples were collected daily, and results were posted to a website within 24 h. SARS-CoV-2 RNA in daily samples correlated with the incidence of COVID-19 cases in the sewersheds; a 1 log10 increase in SARS-CoV-2 RNA in settled solids corresponds to a 0.58 log10 (4×) increase in sewershed incidence rate. SARS-CoV-2 RNA signals measured with the commercial laboratory partner were comparable across plants and comparable to measurements conducted in a university laboratory when normalized by pepper mild mottle virus (PMMoV) RNA. Results suggest that SARS-CoV-2 RNA should be detectable in settled solids for COVID-19 incidence rates of >1/100,000 (range, 0.8 to 2.3 cases per 100,000). These sensitive, representative, scalable, and comparable methods will be valuable for future efforts to scale up wastewater-based epidemiology. IMPORTANCE Access to reliable, rapid monitoring data is critical to guide response to an infectious disease outbreak. For pathogens that are shed in feces or urine, monitoring wastewater can provide a cost-effective snapshot of transmission in an entire community via a single sample. In order for a method to be useful for ongoing COVID-19 monitoring, it should be sensitive for detection of low concentrations of SARS-CoV-2, representative of incidence rates in the community, scalable to generate data quickly, and comparable across laboratories. This paper presents a method utilizing wastewater solids to meet these goals, producing measurements of SARS-CoV-2 RNA strongly associated with COVID-19 cases in the sewershed of a publicly owned treatment work. Results, provided within 24 h, can be used to detect incidence rates as low as approximately 1/100,000 cases and can be normalized for comparison across locations generating data using different methods.

5.
PeerJ ; 9: e11933, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34447628

RESUMO

SARS-CoV-2 RNA in wastewater settled solids is associated with COVID-19 incidence in sewersheds and therefore, there is a strong interest in using these measurements to augment traditional disease surveillance methods. A wastewater surveillance program should provide rapid turn around for sample measurements (ideally within 24 hours), but storage of samples is necessary for a variety of reasons including biobanking. Here we investigate how storage of wastewater solids at 4 °C, -20 °C, and -80 °C affects measured concentrations of SARS-CoV-2 RNA. We find that short term (7 or 8 d) storage of raw solids at 4 °C has little effect on measured concentrations of SARS-CoV-2 RNA, whereas longer term storage at 4 °C (35-122 d) or freezing reduces measurements by 60%, on average. We show that normalizing SARS-CoV-2 RNA concentrations by concentrations of pepper mild mottle virus (PMMoV) RNA, an endogenous wastewater virus, can correct for changes during storage as storage can have a similar effect on PMMoV RNA as on SARS-CoV-2 RNA. The reductions in SARS-CoV-2 RNA in solids during freeze thaws is less than those reported for the same target in liquid influent by several authors.

6.
Nat Genet ; 51(10): 1475-1485, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31548722

RESUMO

The mechanisms by which common risk variants of small effect interact to contribute to complex genetic disorders are unclear. Here, we apply a genetic approach, using isogenic human induced pluripotent stem cells, to evaluate the effects of schizophrenia (SZ)-associated common variants predicted to function as SZ expression quantitative trait loci (eQTLs). By integrating CRISPR-mediated gene editing, activation and repression technologies to study one putative SZ eQTL (FURIN rs4702) and four top-ranked SZ eQTL genes (FURIN, SNAP91, TSNARE1 and CLCN3), our platform resolves pre- and postsynaptic neuronal deficits, recapitulates genotype-dependent gene expression differences and identifies convergence downstream of SZ eQTL gene perturbations. Our observations highlight the cell-type-specific effects of common variants and demonstrate a synergistic effect between SZ eQTL genes that converges on synaptic function. We propose that the links between rare and common variants implicated in psychiatric disease risk constitute a potentially generalizable phenomenon occurring more widely in complex genetic disorders.


Assuntos
Regulação da Expressão Gênica , Predisposição Genética para Doença , Células-Tronco Pluripotentes Induzidas/patologia , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Esquizofrenia/genética , Esquizofrenia/patologia , Sistemas CRISPR-Cas , Canais de Cloreto/antagonistas & inibidores , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Feminino , Furina/antagonistas & inibidores , Furina/genética , Furina/metabolismo , Edição de Genes , Estudo de Associação Genômica Ampla , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Proteínas Monoméricas de Montagem de Clatrina/antagonistas & inibidores , Proteínas Monoméricas de Montagem de Clatrina/genética , Proteínas Monoméricas de Montagem de Clatrina/metabolismo , Proteínas SNARE/antagonistas & inibidores , Proteínas SNARE/genética , Proteínas SNARE/metabolismo
8.
Nat Neurosci ; 19(11): 1442-1453, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27668389

RESUMO

Over 100 genetic loci harbor schizophrenia-associated variants, yet how these variants confer liability is uncertain. The CommonMind Consortium sequenced RNA from dorsolateral prefrontal cortex of people with schizophrenia (N = 258) and control subjects (N = 279), creating a resource of gene expression and its genetic regulation. Using this resource, ∼20% of schizophrenia loci have variants that could contribute to altered gene expression and liability. In five loci, only a single gene was involved: FURIN, TSNARE1, CNTN4, CLCN3 or SNAP91. Altering expression of FURIN, TSNARE1 or CNTN4 changed neurodevelopment in zebrafish; knockdown of FURIN in human neural progenitor cells yielded abnormal migration. Of 693 genes showing significant case-versus-control differential expression, their fold changes were ≤ 1.33, and an independent cohort yielded similar results. Gene co-expression implicates a network relevant for schizophrenia. Our findings show that schizophrenia is polygenic and highlight the utility of this resource for mechanistic interpretations of genetic liability for brain diseases.


Assuntos
Regulação da Expressão Gênica/genética , Predisposição Genética para Doença , Herança Multifatorial/genética , Esquizofrenia/genética , Encéfalo/metabolismo , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Risco
9.
Cell Rep ; 15(5): 1024-1036, 2016 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-27117414

RESUMO

Converging evidence indicates that microRNAs (miRNAs) may contribute to disease risk for schizophrenia (SZ). We show that microRNA-9 (miR-9) is abundantly expressed in control neural progenitor cells (NPCs) but also significantly downregulated in a subset of SZ NPCs. We observed a strong correlation between miR-9 expression and miR-9 regulatory activity in NPCs as well as between miR-9 levels/activity, neural migration, and diagnosis. Overexpression of miR-9 was sufficient to ameliorate a previously reported neural migration deficit in SZ NPCs, whereas knockdown partially phenocopied aberrant migration in control NPCs. Unexpectedly, proteomic- and RNA sequencing (RNA-seq)-based analysis revealed that these effects were mediated primarily by small changes in expression of indirect miR-9 targets rather than large changes in direct miR-9 targets; these indirect targets are enriched for migration-associated genes. Together, these data indicate that aberrant levels and activity of miR-9 may be one of the many factors that contribute to SZ risk, at least in a subset of patients.


Assuntos
Regulação da Expressão Gênica , MicroRNAs/genética , Células-Tronco Neurais/metabolismo , Esquizofrenia/genética , Esquizofrenia/patologia , Estudos de Casos e Controles , Movimento Celular/genética , Perfilação da Expressão Gênica , Estudos de Associação Genética , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , MicroRNAs/metabolismo , Modelos Biológicos , Anotação de Sequência Molecular , Células-Tronco Neurais/patologia , Neurônios/metabolismo , Proteoma/metabolismo , Fatores de Transcrição/metabolismo
10.
Biomark Insights ; 10(Suppl 1): 31-41, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26045654

RESUMO

Aberrant behavior and function of neurons are believed to be the primary causes of most neurological diseases and psychiatric disorders. Human postmortem samples have limited availability and, while they provide clues to the state of the brain after a prolonged illness, they offer limited insight into the factors contributing to disease onset. Conversely, animal models cannot recapitulate the polygenic origins of neuropsychiatric disease. Novel methods, such as somatic cell reprogramming, deliver nearly limitless numbers of pathogenic human neurons for the study of the mechanism of neuropsychiatric disease initiation and progression. First, this article reviews the advent of human induced pluripotent stem cell (hiPSC) technology and introduces two major methods, "directed differentiation" and "neuronal induction," by which it is now possible to generate neurons for modeling neuropsychiatric disease. Second, it discusses the recent applications, and the limitations, of these technologies to in vitro studies of psychiatric disorders.

11.
J Vis Exp ; (96): e52495, 2015 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-25742222

RESUMO

Post-mortem studies of neurological diseases are not ideal for identifying the underlying causes of disease initiation, as many diseases include a long period of disease progression prior to the onset of symptoms. Because fibroblasts from patients and healthy controls can be efficiently reprogrammed into human induced pluripotent stem cells (hiPSCs), and subsequently differentiated into neural progenitor cells (NPCs) and neurons for the study of these diseases, it is now possible to recapitulate the developmental events that occurred prior to symptom onset in patients. We present a method by which to efficiently differentiate hiPSCs into NPCs, which in addition to being capable of further differentiation into functional neurons, can also be robustly passaged, freeze-thawed or transitioned to grow as neurospheres, enabling rapid genetic screening to identify the molecular factors that impact cellular phenotypes including replication, migration, oxidative stress and/or apoptosis. Patient derived hiPSC NPCs are a unique platform, ideally suited for the empirical testing of the cellular or molecular consequences of manipulating gene expression.


Assuntos
Técnicas Citológicas/métodos , Células-Tronco Pluripotentes Induzidas/citologia , Doenças do Sistema Nervoso/patologia , Células-Tronco Neurais/citologia , Diferenciação Celular/fisiologia , Humanos
13.
Artigo em Inglês | MEDLINE | ID: mdl-24068527

RESUMO

Neural stem/progenitor cells (NSPCs) have the potential to differentiate into neurons, astrocytes, and/or oligodendrocytes. Because these cells can be expanded in culture, they represent a vast source of neural cells. With the recent discovery that patient fibroblasts can be reprogrammed directly into induced NSPCs, the regulation of NSPC fate and function, in the context of cell-based disease models and patient-specific cell-replacement therapies, warrants review.


Assuntos
Diferenciação Celular , Modelos Neurológicos , Doenças do Sistema Nervoso/metabolismo , Células-Tronco Neurais/metabolismo , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Humanos , Doenças do Sistema Nervoso/patologia , Células-Tronco Neurais/patologia , Neurônios/metabolismo , Neurônios/patologia , Oligodendroglia/metabolismo , Oligodendroglia/patologia
14.
Appl Environ Microbiol ; 79(13): 3917-25, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23603678

RESUMO

Infectious diseases disproportionately affect indigent regions and are the greatest cause of childhood mortality in developing countries. Practical, low-cost vaccines for use in these countries are paramount to reducing disease burdens and concomitant poverty. Algae are a promising low-cost system for producing vaccines that can be orally delivered, thereby avoiding expensive purification and injectable delivery. We engineered the chloroplast of the eukaryotic alga Chlamydomonas reinhardtii to produce a chimeric protein consisting of the 25-kDa Plasmodium falciparum surface protein (Pfs25) fused to the ß subunit of the cholera toxin (CtxB) to investigate an alga-based whole-cell oral vaccine. Pfs25 is a promising malaria transmission-blocking vaccine candidate that has been difficult to produce in traditional recombinant systems due to its structurally complex tandem repeats of epidermal growth factor-like domains. The noncatalytic CtxB domain of the cholera holotoxin assembles into a pentameric structure and acts as a mucosal adjuvant by binding GM1 ganglioside receptors on gut epithelial cells. We demonstrate that CtxB-Pfs25 accumulates as a soluble, properly folded and functional protein within algal chloroplasts, and it is stable in freeze-dried alga cells at ambient temperatures. In mice, oral vaccination using freeze-dried algae that produce CtxB-Pfs25 elicited CtxB-specific serum IgG antibodies and both CtxB- and Pfs25-specific secretory IgA antibodies. These data suggest that algae are a promising system for production and oral delivery of vaccine antigens, but as an orally delivered adjuvant, CtxB is best suited for eliciting secretory IgA antibodies for vaccine antigens against pathogens that invade mucosal surfaces using this strategy.


Assuntos
Bioengenharia/métodos , Chlamydomonas reinhardtii/genética , Toxina da Cólera/metabolismo , Vacinas Antimaláricas/biossíntese , Malária/prevenção & controle , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes/biossíntese , Administração Oral , Animais , Western Blotting , Ensaio de Imunoadsorção Enzimática , Fezes/parasitologia , Imunoglobulina G/sangue , Vacinas Antimaláricas/administração & dosagem , Camundongos , Proteínas Recombinantes/metabolismo
15.
PLoS One ; 7(5): e37179, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22615931

RESUMO

Subunit vaccines are significantly more expensive to produce than traditional vaccines because they are based primarily on recombinant proteins that must be purified from the expression system. Despite the increased cost, subunit vaccines are being developed because they are safe, effective, and can elicit antibodies that confer protection against diseases that are not currently vaccine-preventable. Algae are an attractive platform for producing subunit vaccines because they are relatively inexpensive to grow, genetically tractable, easily scaled to large volumes, have a short generation time, and are devoid of inflammatory, viral, or prion contaminants often present in other systems. We tested whether algal chloroplasts can produce malaria transmission blocking vaccine candidates, Plasmodium falciparum surface protein 25 (Pfs25) and 28 (Pfs28). Antibodies that recognize Pfs25 and Pfs28 disrupt the sexual development of parasites within the mosquito midgut, thus preventing transmission of malaria from one human host to the next. These proteins have been difficult to produce in traditional recombinant systems because they contain tandem repeats of structurally complex epidermal growth factor-like domains, which cannot be produced in bacterial systems, and because they are not glycosylated, so they must be modified for production in eukaryotic systems. Production in algal chloroplasts avoids these issues because chloroplasts can fold complex eukaryotic proteins and do not glycosylate proteins. Here we demonstrate that algae are the first recombinant system to successfully produce an unmodified and aglycosylated version of Pfs25 or Pfs28. These antigens are structurally similar to the native proteins and antibodies raised to these recombinant proteins recognize Pfs25 and Pfs28 from P. falciparum. Furthermore, antibodies to algae-produced Pfs25 bind the surface of in-vitro cultured P. falciparum sexual stage parasites and exhibit transmission blocking activity. Thus, algae are promising organisms for producing cysteine-disulfide-containing malaria transmission blocking vaccine candidate proteins.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Cloroplastos/metabolismo , Vacinas Antimaláricas/biossíntese , Proteínas de Protozoários/imunologia , Sequência de Aminoácidos , Animais , Antígenos de Protozoários/biossíntese , Malária Falciparum/prevenção & controle , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA