Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(15): 8353-8359, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32229558

RESUMO

Recent isotopic and paleomagnetic data point to a possible connection between carbonaceous chondrites and differentiated planetary materials, suggesting the existence, perhaps ephemeral, of transitional objects with a layered structure whereby a metal-rich core is enclosed by a silicate mantle, which is itself overlain by a crust containing an outermost layer of primitive solar nebula materials. This idea has not received broad support, mostly because of a lack of samples in the meteoritic record that document incipient melting at the onset of planetary differentiation. Here, we report the discovery and the petrologic-isotopic characterization of UH154-11, a ferroan trachybasalt fragment enclosed in a Renazzo-type carbonaceous chondrite (CR). Its chemical and oxygen isotopic compositions are consistent with very-low-degree partial melting of a Vigarano-type carbonaceous chondrite (CV) from the oxidized subgroup at a depth where fluid-assisted metamorphism enhanced the Na content. Its microdoleritic texture indicates crystallization at an increasing cooling rate, such as would occur during magma ascent through a chondritic crust. This represents direct evidence of magmatic activity in a carbonaceous asteroid on the verge of differentiating and demonstrates that some primitive outer Solar System objects related to icy asteroids and comets underwent a phase of magmatic activity early in the Solar System. With its peculiar petrology, UH154-11 can be considered the long-sought first melt produced during partial differentiation of a carbonaceous chondritic planetary body, bridging a previously persistent gap in differentiation processes from icy cometary bodies to fully melted iron meteorites with isotopic affinities to carbonaceous chondrites.

2.
Anal Chem ; 91(21): 13763-13771, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31549804

RESUMO

The D/H ratio imaging of weakly hydrated minerals prepared as focused ion beam (FIB) sections is developed in order to combine isotopic imaging by nanoscale secondary ion mass spectrometry (NanoSIMS) of micrometer-sized grains with other nanoscale imaging techniques, such as transmission electron microscopy. In order to maximize the accuracy, sensitivity, precision, and reproducibility of D/H ratios at the micrometer size, while minimizing the surface contamination at the same time, we explored all instrumental parameters known to influence the measurement of D/H ratios in situ. Optimal conditions were found to be obtained with the use of (i) a Cs+ ion source and detection of H- and D- at low mass resolving power, (ii) a primary beam intensity of 100 pA, and (iii) raster sizes in the range of 8-15 µm. Nominally anhydrous minerals were used to evaluate the detection limits and indicate a surface contamination level of ∼200 ppm equivalent H2O under these conditions. With the high primary intensity used here, the dwell time is not a parameter as critical as found in previous studies and a dwell time of 1 ms/px is used to minimize dynamic contamination during analysis. Analysis of FIB sections was found to reduce significantly static contamination due to sample preparation and improved accuracy compared to using polished sections embedded not only in epoxy but in indium as well. On amphiboles, the typical overall uncertainty including reproducibility is ∼20 ‰ on bulk FIB sections and ∼50 ‰ at the 1.5 µm scale using image processing (1σ).

3.
Science ; 314(5806): 1735-9, 2006 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-17170295

RESUMO

The bulk of the comet 81P/Wild 2 (hereafter Wild 2) samples returned to Earth by the Stardust spacecraft appear to be weakly constructed mixtures of nanometer-scale grains, with occasional much larger (over 1 micrometer) ferromagnesian silicates, Fe-Ni sulfides, Fe-Ni metal, and accessory phases. The very wide range of olivine and low-Ca pyroxene compositions in comet Wild 2 requires a wide range of formation conditions, probably reflecting very different formation locations in the protoplanetary disk. The restricted compositional ranges of Fe-Ni sulfides, the wide range for silicates, and the absence of hydrous phases indicate that comet Wild 2 experienced little or no aqueous alteration. Less abundant Wild 2 materials include a refractory particle, whose presence appears to require radial transport in the early protoplanetary disk.

4.
Nature ; 437(7062): 1121-4, 2005 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-16237436

RESUMO

The signature of carbonate minerals has long been suspected in the mid-infrared spectra of various astrophysical environments such as protostars. Abiogenic carbonates are considered as indicators of aqueous mineral alteration in the presence of CO2-rich liquid water. The recent claimed detection of calcite associated with amorphous silicates in two planetary nebulae and protostars devoid of planetary bodies questions the relevance of this indicator; but in the absence of an alternative mode of formation under circumstellar conditions, this detection remains controversial. The main dust component observed in circumstellar envelopes is amorphous silicates, which are thought to have formed by non-equilibrium condensation. Here we report experiments demonstrating that carbonates can be formed with amorphous silicates during the non-equilibrium condensation of a silicate gas in a H2O-CO2-rich vapour. We propose that the observed astrophysical carbonates have condensed in H2O(g)-CO2(g)-rich, high-temperature and high-density regions such as evolved stellar winds, or those induced by grain sputtering upon shocks in protostellar outflows.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA