Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Eur J Hum Genet ; 28(3): 349-357, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31654039

RESUMO

Mosaic loss of chromosome Y (LOY) is the most common somatic genetic aberration and is associated with increased risk for all-cause mortality, various forms of cancer and Alzheimer's disease, as well as other common human diseases. By tracking LOY frequencies in subjects from which blood samples have been serially collected up to five times during up to 22 years, we observed a pronounced intra-individual variation of changes in the frequency of LOY within individual men over time. We observed that in some individuals the frequency of LOY in blood clearly progressed over time and that in other men, the frequency was constant or showed other types of longitudinal development. The predominant method used for estimating LOY is calculation of the median Log R Ratio of probes located in the male specific part of chromosome Y (mLRRY) from intensity data generated by SNP-arrays, which is difficult to interpret due to its logarithmic and inversed scale. We present here a formula to transform mLRRY-values to percentage of LOY that is a more comprehensible unit. The formula was derived using measurements of LOY from matched samples analysed using SNP-array, whole genome sequencing and a new AMELX/AMELY-based assay for droplet digital PCR. The methods described could be applied for analyses of the vast amount of SNP-array data already generated in the scientific community, allowing further discoveries of LOY associated diseases and outcomes.


Assuntos
Envelhecimento/genética , Deleção Cromossômica , Cromossomos Humanos Y/genética , Mosaicismo , Polimorfismo Genético , Envelhecimento/sangue , Células Sanguíneas/metabolismo , Humanos , Masculino
2.
J Psychiatr Res ; 114: 41-47, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31022588

RESUMO

Schizophrenia is a common mental disorder with high heritability. It is genetically complex and to date more than a hundred risk loci have been identified. Association of environmental factors and schizophrenia has also been reported, while epigenetic analyses have yielded ambiguous and sometimes conflicting results. Here, we analyzed fresh frozen post-mortem brain tissue from a cohort of 73 subjects diagnosed with schizophrenia and 52 control samples, using the Illumina Infinium HumanMethylation450 Bead Chip, to investigate genome-wide DNA methylation patterns in the two groups. Analysis of differential methylation was performed with the Bioconductor Minfi package and modern machine-learning and visualization techniques, which were shown previously to be successful in detecting and highlighting differentially methylated patterns in case-control studies. In this dataset, however, these methods did not uncover any significant signals discerning the patient group and healthy controls, suggesting that if there are methylation changes associated with schizophrenia, they are heterogeneous and complex with small effect.


Assuntos
Metilação de DNA/genética , Aprendizado de Máquina , Esquizofrenia/genética , Encéfalo/metabolismo , Estudos de Casos e Controles , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Esquizofrenia/metabolismo
3.
BMC Bioinformatics ; 17(1): 393, 2016 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-27663458

RESUMO

BACKGROUND: DNA methylation plays a key role in developmental processes, which is reflected in changing methylation patterns at specific CpG sites over the lifetime of an individual. The underlying mechanisms are complex and possibly affect multiple genes or entire pathways. RESULTS: We applied a multivariate approach to identify combinations of CpG sites that undergo modifications when transitioning between developmental stages. Monte Carlo feature selection produced a list of ranked and statistically significant CpG sites, while rule-based models allowed for identifying particular methylation changes in these sites. Our rule-based classifier reports combinations of CpG sites, together with changes in their methylation status in the form of easy-to-read IF-THEN rules, which allows for identification of the genes associated with the underlying sites. CONCLUSION: We utilized machine learning and statistical methods to discretize decision class (age) values to get a general pattern of methylation changes over the lifespan. The CpG sites present in the significant rules were annotated to genes involved in brain formation, general development, as well as genes linked to cancer and Alzheimer's disease.

4.
PLoS One ; 8(11): e80080, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24260339

RESUMO

Both genetic and environmental factors are important for the development of allergic diseases. However, a detailed understanding of how such factors act together is lacking. To elucidate the interplay between genetic and environmental factors in allergic diseases, we used a novel bioinformatics approach that combines feature selection and machine learning. In two materials, PARSIFAL (a European cross-sectional study of 3113 children) and BAMSE (a Swedish birth-cohort including 2033 children), genetic variants as well as environmental and lifestyle factors were evaluated for their contribution to allergic phenotypes. Monte Carlo feature selection and rule based models were used to identify and rank rules describing how combinations of genetic and environmental factors affect the risk of allergic diseases. Novel interactions between genes were suggested and replicated, such as between ORMDL3 and RORA, where certain genotype combinations gave odds ratios for current asthma of 2.1 (95% CI 1.2-3.6) and 3.2 (95% CI 2.0-5.0) in the BAMSE and PARSIFAL children, respectively. Several combinations of environmental factors appeared to be important for the development of allergic disease in children. For example, use of baby formula and antibiotics early in life was associated with an odds ratio of 7.4 (95% CI 4.5-12.0) of developing asthma. Furthermore, genetic variants together with environmental factors seemed to play a role for allergic diseases, such as the use of antibiotics early in life and COL29A1 variants for asthma, and farm living and NPSR1 variants for allergic eczema. Overall, combinations of environmental and life style factors appeared more frequently in the models than combinations solely involving genes. In conclusion, a new bioinformatics approach is described for analyzing complex data, including extensive genetic and environmental information. Interactions identified with this approach could provide useful hints for further in-depth studies of etiological mechanisms and may also strengthen the basis for risk assessment and prevention.


Assuntos
Predisposição Genética para Doença/genética , Hipersensibilidade/genética , Polimorfismo de Nucleotídeo Único/genética , Adolescente , Asma/genética , Criança , Pré-Escolar , Biologia Computacional/métodos , Estudos Transversais , Meio Ambiente , Feminino , Genótipo , Humanos , Estilo de Vida , Masculino , Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA