Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Anat ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38749764

RESUMO

Mawsonia constitutes one of the most conspicuous fossil coelacanth taxa, due to its unique anatomy and possible maximum body size. It typifies Mesozoic coelacanth morphology, before the putative disappearance of the group in the fossil record. In this work, the three-dimensional cranial anatomy and body size estimations of this genus are re-evaluated from a recently described specimen from Upper Jurassic deposits of Uruguay. The 3D restoration was performed directly on the material based on anatomical information provided by the living coelacanth Latimeria and previous two-dimensional restorations of the head of Mawsonia. The montage was then scanned with computed tomography and virtually adjusted to generate an interactive online resource for future anatomical, taxonomic and biomechanical research. In general terms, the model constitutes a tool to improve both the anatomical knowledge of this genus and its comparison with other coelacanths. It also facilitates the evaluation of possible evolutionary trends and the discussion of particular features with potential palaeobiological implications, such as the anterior position of the eye and the development of the pseudomaxillary fold. Regarding the body size, a previous model for body size estimation based on the gular plate was submitted to OLS, RMA, segmented linear and PGLS regressions (including the evaluation of regression statistics, variance analysis, t-tests and residual analysis). The results point to a power relationship between gular and total lengths showing a better support than a simple linear relationship. The new resulting equations were applied to the studied individual and are provided for future estimates. Although an isometric evolutionary growth cannot be rejected with the available evidence, additional models developed with other bones will be necessary to evaluate possible hidden evolutionary allometric trends in this group of fishes, thus avoiding overestimates.

2.
PLoS One ; 16(11): e0259292, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34762682

RESUMO

Today, the only living genus of coelacanth, Latimeria is represented by two species along the eastern coast of Africa and in Indonesia. This sarcopterygian fish is nicknamed a "living fossil", in particular because of its slow evolution. The large geographical distribution of Latimeria may be a reason for the great resilience to extinction of this lineage, but the lack of fossil records for this genus prevents us from testing this hypothesis. Here we describe isolated bones (right angular, incomplete basisphenoid, fragments of parasphenoid and pterygoid) found in the Cenomanian Woodbine Formation in northeast Texas that are referred to the mawsoniid coelacanth Mawsonia sp. In order to assess the impact of this discovery on the alleged characteristic of "living fossils" in general and of coelacanths in particular: 1) we compared the average time duration of genera of ray-finned fish and coelacanth in the fossil record; 2) we compared the biogeographic signal from Mawsonia with the signal from the rest of the vertebrate assemblage of the Woodbine formation; and 3) we compared these life traits with those of Latimeria. The stratigraphical range of Mawsonia is at least 50 million years. Since Mawsonia was a fresh, brackish water fish with probably a low ability to cross large sea barriers and because most of the continental components of the Woodbine Fm vertebrate assemblage exhibit Laurasian affinities, it is proposed that the Mawsonia's occurrence in North America is more likely the result of a vicariant event linked to the break-up of Pangea rather than the result of a dispersal from Gondwana. The link between a wide geographic distribution and the resilience to extinction demonstrated here for Mawsonia is a clue that a similar situation existed for Latimeria, which allowed this genus to live for tens of millions of years.


Assuntos
Fósseis , Animais , Peixes , Filogenia , Vertebrados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA