Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Int J Mol Sci ; 24(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37569634

RESUMO

Leukemia invades the bone marrow progressively and, through unknown mechanisms, outcompetes healthy hematopoiesis. Protein arginine methyltransferases 1 (PRMT1) are found in prokaryotes and eukaryotes cells. They are necessary for a number of biological processes and have been linked to several human diseases, including cancer. Small compounds that target PRMT1 have a significant impact on both functional research and clinical disease treatment. In fact, numerous PRMT1 inhibitors targeting the S-adenosyl-L-methionine binding region have been studied. Through topographical descriptors, quantitative structure-activity relationships (QSAR) were developed in order to identify the most effective PRMT1 inhibitors among 17 compounds. The model built using linear discriminant analysis allows us to accurately classify over 90% of the investigated active substances. Antileukemic activity is predicted using a multilinear regression analysis, and it can account for more than 56% of the variation. Both analyses are validated using an internal "leave some out" test. The developed model could be utilized in future preclinical experiments with novel drugs.


Assuntos
Leucemia , Neoplasias , Humanos , Relação Quantitativa Estrutura-Atividade , Proteína-Arginina N-Metiltransferases/metabolismo , Inibidores Enzimáticos/farmacologia , Leucemia/tratamento farmacológico , Proteínas Repressoras/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-37114792

RESUMO

BACKGROUND: Agave brittoniana subsp. brachypus is an endemic plant of Cuba, which contains different steroidal sapogenins with anti-inflammatory effects. This work aims to develop computational models which allow the identification of new chemical compounds with potential anti-inflammatory activity. METHODS: The in vivo anti-inflammatory activity was evaluated in two rat models: carrageenaninduced paw edema and cotton pellet-induced granuloma. In each study, we used 30 Sprague Dawley male rats divided into five groups containing six animals. The products isolated and administrated were fraction rich in yuccagenin and sapogenins crude. RESULTS: The obtained model, based on a classification tree, showed an accuracy value of 86.97% for the training set. Seven compounds (saponins and sapogenins) were identified as potential antiinflammatory agents in the virtual screening. According to in vivo studies, the yuccagenin-rich fraction was the greater inhibitor of the evaluated product from Agave. CONCLUSION: The evaluated metabolites of the Agave brittoniana subsp. Brachypus showed an interesting anti-inflammatory effect.


Assuntos
Agave , Sapogeninas , Saponinas , Ratos , Animais , Sapogeninas/farmacologia , Agave/química , Ratos Sprague-Dawley , Saponinas/química , Saponinas/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Extratos Vegetais/farmacologia , Extratos Vegetais/química
3.
Curr Top Med Chem ; 23(1): 3-16, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35473544

RESUMO

The new pandemic caused by the coronavirus (SARS-CoV-2) has become the biggest challenge that the world is facing today. It has been creating a devastating global crisis, causing countless deaths and great panic. The search for an effective treatment remains a global challenge owing to controversies related to available vaccines. A great research effort (clinical, experimental, and computational) has emerged in response to this pandemic, and more than 125000 research reports have been published in relation to COVID-19. The majority of them focused on the discovery of novel drug candidates or repurposing of existing drugs through computational approaches that significantly speed up drug discovery. Among the different used targets, the SARS-CoV-2 main protease (Mpro), which plays an essential role in coronavirus replication, has become the preferred target for computational studies. In this review, we examine a representative set of computational studies that use the Mpro as a target for the discovery of small-molecule inhibitors of COVID-19. They will be divided into two main groups, structure-based and ligand-based methods, and each one will be subdivided according to the strategies used in the research. From our point of view, the use of combined strategies could enhance the possibilities of success in the future, permitting to development of more rigorous computational studies in future efforts to combat current and future pandemics.


Assuntos
Antivirais , COVID-19 , Proteases 3C de Coronavírus , Inibidores de Protease de Coronavírus , Descoberta de Drogas , Humanos , Antivirais/farmacologia , Simulação de Acoplamento Molecular , SARS-CoV-2 , Proteases 3C de Coronavírus/antagonistas & inibidores , Inibidores de Protease de Coronavírus/farmacologia
4.
Mol Divers ; 26(3): 1383-1397, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34216326

RESUMO

With the advancement of combinatorial chemistry and big data, drug repositioning has boomed. In this sense, machine learning and artificial intelligence techniques offer a priori information to identify the most promising candidates. In this study, we combine QSAR and docking methodologies to identify compounds with potential inhibitory activity of vasoactive metalloproteases for the treatment of cardiovascular diseases. To develop this study, we used a database of 191 thermolysin inhibitor compounds, which is the largest as far as we know. First, we use Dragon's molecular descriptors (0-3D) to develop classification models using Bayesian networks (Naive Bayes) and artificial neural networks (Multilayer Perceptron). The obtained models are used for virtual screening of small molecules in the international DrugBank database. Second, docking experiments are carried out for all three enzymes using the Autodock Vina program, to identify possible interactions with the active site of human metalloproteases. As a result, high-performance artificial intelligence QSAR models are obtained for training and prediction sets. These allowed the identification of 18 compounds with potential inhibitory activity and an adequate oral bioavailability profile, which were evaluated using docking. Four of them showed high binding energies for the three enzymes, and we propose them as potential dual ACE/NEP inhibitors for the control of blood pressure. In summary, the in silico strategies used here constitute an important tool for the early identification of new antihypertensive drug candidates, with substantial savings in time and money.


Assuntos
Inteligência Artificial , Aprendizado de Máquina , Teorema de Bayes , Reposicionamento de Medicamentos , Humanos , Metaloproteases , Simulação de Acoplamento Molecular , Relação Quantitativa Estrutura-Atividade
5.
Molecules ; 26(1)2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33466352

RESUMO

Based on a set of six vector properties, the partial correlation diagram is calculated for a set of 28 S-alkylcysteine diazomethyl- and chloromethyl-ketone derivatives. Those with the greatest antileukemic activity in the same class correspond to high partial correlations. A periodic classification is performed based on information entropy. The first four characteristics denote the group, and the last two indicate the period. Compounds in the same period and, especially, group present similar properties. The most active substances are situated at the bottom right. Nine classes are distinguished. The principal component analysis of the homologous compounds shows five subclasses included in the periodic classification. Linear fits of both antileukemic activities and stability are good. They are in agreement with the principal component analysis. The variables that appear in the models are those that show positive loading in the principal component analysis. The most important properties to explain the antileukemic activities (50% inhibitory concentration Molt-3 T-lineage acute lymphoblastic leukemia minus the logarithm of 50% inhibitory concentration Nalm-6 B-lineage acute lymphoblastic leukemia and stability k) are ACD logD, surface tension and number of violations of Lipinski's rule of five. After leave-m-out cross-validation, the most predictive model for cysteine diazomethyl- and chloromethyl-ketone derivatives is provided.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Cisteína/química , Cetonas/química , Cetonas/farmacologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Proliferação de Células , Entropia , Humanos , Modelos Moleculares , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Relação Quantitativa Estrutura-Atividade , Células Tumorais Cultivadas
6.
Curr Drug Discov Technol ; 17(2): 166-182, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-30621564

RESUMO

BACKGROUND: Some lactones prevent protein Myb-dependent gene expression. OBJECTIVE: The object is to calculate inhibitors of Myb-brought genetic manifestation. METHODS: Linear quantitative structure-potency relations result expanded, among sesquiterpene lactones of a variety of macrocycles (pseudoguaianolides, guaianolides, eudesmanolides and germacranolides), to establish which part of the molecule constitutes their pharmacophore, and predict their inhibitory potency on Myb-reliant genetic manifestation, which may result helpful as leads for antileukaemic therapies with a new mechanism of action. RESULTS: Several count indices are connected with structure-activity. The α-methylene-γ-lactone ML functional groups increase, whereas OH groups decrease the activity. Hydrophobicity provides to increase cell toxicity. Four counts (ML, number of α, ß-unsaturated CO groups, etc.), connected with the number of oxygens, present a positive association, owing to the partial negative charge of oxygen. The s-trans-strans- germacranolide molecule presents maximal potency. The OH groups decrease the potency owing to the positive charge of hydrogen. The numbers of π-systems and atoms, and polarizability increase the potency. Following least squares, every standard error of the coefficients is satisfactory in every expression. The most predictive linear expressions for lactones, pseudoguaianolides and germacranolides are corroborated by leave-group-out cross-validation. Quadratic equations do not make the correlation better. CONCLUSION: Likely action mechanisms for lactones are argued with a diversity of functional groups in the lactone annulus, including artemisinin with its uncommon macrocycle characteristic, 1,2,4-trioxane cycle (pharmacophoric peroxide linkage -O1-O2- in endoperoxide ring), which results in the foundation for its sole antimalarial potency.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Desenho de Fármacos , Neoplasias/tratamento farmacológico , Moduladores de Tubulina/farmacologia , Tubulina (Proteína)/ultraestrutura , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/uso terapêutico , Etoposídeo/química , Etoposídeo/farmacologia , Etoposídeo/uso terapêutico , Humanos , Lactonas/química , Lactonas/farmacologia , Lactonas/uso terapêutico , Ligantes , Simulação de Acoplamento Molecular , Paclitaxel/química , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Sesquiterpenos/química , Sesquiterpenos/farmacologia , Sesquiterpenos/uso terapêutico , Homologia Estrutural de Proteína , Relação Estrutura-Atividade , Topotecan/química , Topotecan/farmacologia , Topotecan/uso terapêutico , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/química , Moduladores de Tubulina/uso terapêutico
7.
Curr Top Med Chem ; 18(27): 2347-2354, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30499402

RESUMO

Leishmaniasis is a poverty-related disease endemic in 98 countries worldwide, with morbidity and mortality increasing daily. All currently used first-line and second-line drugs for the treatment of leishmaniasis exhibit several drawbacks including toxicity, high costs and route of administration. Consequently, the development of new treatments for leishmaniasis is a priority in the field of neglected tropical diseases. The aim of this work is to develop computational models those allow the identification of new chemical compounds with potential anti-leishmanial activity. A data set of 116 organic chemicals, assayed against promastigotes of Leishmania amazonensis, is used to develop the theoretical models. The cutoff value to consider a compound as active one was IC50≤1.5µM. For this study, we employed Dragon software to calculate the molecular descriptors and WEKA to obtain machine learning (ML) models. All ML models showed accuracy values between 82% and 91%, for the training set. The models developed with k-nearest neighbors and classification trees showed sensitivity values of 97% and 100%, respectively; while the models developed with artificial neural networks and support vector machine showed specificity values of 94% and 92%, respectively. In order to validate our models, an external test-set was evaluated with good behavior for all models. A virtual screening was performed and 156 compounds were identified as potential anti-leishmanial by all the ML models. This investigation highlights the merits of ML-based techniques as an alternative to other more traditional methods to find new chemical compounds with anti-leishmanial activity.


Assuntos
Antiprotozoários/farmacologia , Leishmania/efeitos dos fármacos , Aprendizado de Máquina , Antiprotozoários/química , Avaliação Pré-Clínica de Medicamentos , Modelos Moleculares , Testes de Sensibilidade Parasitária , Software
8.
Curr Top Med Chem ; 17(30): 3256-3268, 2018 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-29231144

RESUMO

BACKGROUND: Protein c-Myb is a therapeutic target. Some sesquiterpene lactones suppress Myb-dependent gene expression, which results in their potential anti-cancer activity. MATERIAL & METHODS: Database ChEMBL is a representative of lactones for physicochemical and physiochemical properties. Data presented for 31 natural lactones are discussed in terms of quantitative structureactivity relationships with the objective to predict inhibitors of Myb-induced gene expression. Several constitutional descriptors are related to structure-activity. α-Methylene-γ-lactone groups enhance while OH functions worsen potency. The latter feature is in agreement with the fact that the more lipophilic the lactone, the greater the cytotoxicity because of the ability to cross lipoidal biomembranes. In general, numbers of π-systems and atoms, and polarizability enhance activity. Linear and nonlinear structure-activity models are developed, between lactones of a great structural diversity, to predict inhibitors of Myb-induced gene expression. Four variables (ML, UNC, TCO+OCOR, UNC+UNA) related to ATOM show a positive correlation because of the partial anionic and H-acceptor characters of O-atom. In most, CO group is conjugated. RESULT AND CONCLUSION: Term OH shows negative coefficients because of the partial cationic quality of H-atom and because OH forms H-bonds with CO, causing them to be less H-acceptor. s-trans-s-trans-Germacranolide structure is the most active. Coefficients standard errors result acceptable in almost all equations. After cross-validation, linear equations for lactones, pseudoguaianolides and germacranolides are the most predictive. Most descriptors are constitutional variables.


Assuntos
Produtos Biológicos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Lactonas/farmacologia , Proteínas Proto-Oncogênicas c-myb/antagonistas & inibidores , Relação Quantitativa Estrutura-Atividade , Sesquiterpenos/farmacologia , Produtos Biológicos/química , Relação Dose-Resposta a Droga , Humanos , Lactonas/química , Modelos Moleculares , Estrutura Molecular , Proteínas Proto-Oncogênicas c-myb/genética , Sesquiterpenos/química
9.
Curr Top Med Chem ; 17(26): 2957-2976, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28828995

RESUMO

BACKGROUND: There are a great number of tools that can be used in QSAR/QSPR studies; they are implemented in several programs that are reviewed in this report. The usefulness of new tools can be proved through comparison, with previously published approaches. In order to perform the comparison, the most usual is the use of several benchmark datasets such as DRAGON and Sutherland's datasets. METHODS: Here, an exploratory study of Atomic Weighted Vectors (AWVs), a new tool useful for drug discovery using different datasets, is presented. In order to evaluate the performance of the new tool, several statistics and QSAR/QSPR experiments are performed. Variability analyses are used to quantify the information content of the AWVs obtained from the tool, by means of an information theory-based algorithm. RESULTS: Principal components analysis is used to analyze the orthogonality of these descriptors, for which the new MDs from AWVs provide different information from those codified by DRAGON descriptors (0-2D). The QSAR models are obtained for every Sutherland's dataset, according to the original division into training/test sets, by means of the multiple linear regression with genetic algorithm (MLR-GA). These models have been validated and compared favorably to several previously published approaches, using the same benchmark datasets. CONCLUSION: The obtained results show that this tool should be a useful strategy for the QSAR/QSPR studies, despite its simplicity.


Assuntos
Descoberta de Drogas/métodos , Software , Modelos Moleculares , Estrutura Molecular , Relação Quantitativa Estrutura-Atividade , Relação Estrutura-Atividade
10.
J Vector Borne Dis ; 54(2): 164-171, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28748838

RESUMO

BACKGROUND & OBJECTIVES: Aedes aegypti is an important vector for transmission of dengue, yellow fever, chikun- gunya, arthritis, and Zika fever. According to the World Health Organization, it is estimated that Ae. aegypti causes 50 million infections and 25,000 deaths per year. Use of larvicidal agents is one of the recommendations of health organizations to control mosquito populations and limit their distribution. The aim of present study was to deduce a mathematical model to predict the larvicidal action of chemical compounds, based on their structure. METHODS: A series of different compounds with experimental evidence of larvicidal activity were selected to develop a predictive model, using multiple linear regression and a genetic algorithm for the selection of variables, implemented in the QSARINS software. The model was assessed and validated using the OECDs principles. RESULTS: The best model showed good value for the determination coefficient (R2 = 0.752), and others parameters were appropriate for fitting (s = 0.278 and RMSEtr = 0.261). The validation results confirmed that the model hasgood robustness (Q2LOO = 0.682) and stability (R2-Q2LOO = 0.070) with low correlation between the descriptors (KXX = 0.241), an excellent predictive power (R2 ext = 0.834) and was product of a non-random correlation R2 Y-scr = 0.100). INTERPRETATION & CONCLUSION: The present model shows better parameters than the models reported earlier in the literature, using the same dataset, indicating that the proposed computational tools are more efficient in identifying novel larvicidal compounds against Ae. aegypti.


Assuntos
Aedes/efeitos dos fármacos , Biologia Computacional/métodos , Inseticidas/química , Inseticidas/farmacologia , Animais , Modelos Teóricos , Mosquitos Vetores/efeitos dos fármacos , Software , Relação Estrutura-Atividade
11.
Curr Pharm Des ; 22(33): 5095-5113, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27852205

RESUMO

In the present study, a generalized approach for molecular structure characterization is introduced, based on the relation frequency matrix (F) representation of the molecular graph and the subsequent calculation of the corresponding discrete derivative (finite difference) over a pair of elements (atoms). In earlier publications (22- 24), an unique event, named connected subgraphs, (based on the Kier-Hall's subgraphs) was systematically employed for the computation of the matrix F. The present report is a generalization of this notion, in which eleven additional events are introduced, classified in three categories, namely, topological (terminal paths, vertex path incidence, quantum subgraphs, walks of length k, Sach's subgraphs), fingerprints (MACCs, E-state and substructure fingerprints) and atomic contributions (Ghose and Crippen atom-types for hydrophobicity and refractivity) for F generation. The events are intended to capture diverse information by the generation or search of different kinds of substructures from the graph representation of a molecule. The discrete derivative over duplex atom relations are calculated for each event, and the resulting derivatives, local vertex invariants (LOVIs) are finally obtained. These LOVIs are subsequently employed as the basis for the calculation of global and local indices over groups of atoms (heteroatoms, halogens, methyl carbons, etc.), by using norms, means, statistics and classical algorithms as aggregator (fusion) operators. These indices were implemented in our house software DIVATI (Derivative Type Indices, a new module of TOMOCOMDCARDD system). DIVATI provides a friendly and cross-platform graphical user interface, developed in the Java programming language and is freely available at: http: //www.tomocomd.com. Factor analysis shows that the presented events are rather orthogonal and collect diverse information about the chemical structure. Finally, QSPR models were built to describe the logP and logK of 34 furylethylenes derivatives using the eleven events. Generally, the equations obtained according to these events showed high correlations, with the Sach's sub-graphs and Multiplicity events showing the best behavior in the description of logK (Q2 LOO value of 99.06%) and logP (Q2 LOO value of 98.1 %), respectively. These results show that these new eventbased indices constitute a powerful approach for chemoinformatics studies.


Assuntos
Algoritmos , Furanos/química , Modelos Químicos , Software
12.
Curr Pharm Des ; 22(33): 5085-5094, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27568732

RESUMO

BACKGROUND: Many QSAR studies have been developed to predict acute toxicity over several biomarkers like Pimephales promelas, Daphnia magna and Tetrahymena pyriformis. Regardless of the progress made in this field there are still some gaps to be resolved such as the prediction of aquatic toxicity over the protozoan T. pyriformis still lack a QSAR study focused in accomplish the OECD principles. METHODS: Atom-based quadratic indices are used to obtain quantitative structure-activity relationship (QSAR) models for the prediction of aquatic toxicity. Our models agree with the principles required by the OECD for QSAR models to regulatory purposes. The database employed consists of 392 substituted benzenes with toxicity values measured in T. pyriformis (defined endpoint), was divided using cluster analysis in two series (training and test sets). RESULTS: We obtain (with an unambiguous algorithm) two good multiple linear regression models for non-stochastic (R2=0.807 and s=0.334) and stochastic (R2=0.817 and s=0.321), quadratic indices. The models were internally validated using leave-one-out, bootstrapping as well as Y-scrambling experiments. We also perform an external validation using the test set, achieving values of R2 pred values of 0.754 and 0.760, showing that our models have appropriate measures of goodness- of-fit, robustness and predictivity. Moreover, we define a domain of applicability for our best models. CONCLUSION: The achieved results demonstrated that, the atom-based quadratic indices could provide an attractive alternative to the experiments currently used for determining toxicity, which are costly and time-consuming.


Assuntos
Antiprotozoários/toxicidade , Derivados de Benzeno/toxicidade , Tetrahymena pyriformis/efeitos dos fármacos , Algoritmos , Antiprotozoários/química , Derivados de Benzeno/química , Método de Monte Carlo , Testes de Sensibilidade Parasitária , Relação Quantitativa Estrutura-Atividade , Tetrahymena pyriformis/crescimento & desenvolvimento
13.
Int J Mol Sci ; 16(6): 12891-906, 2015 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-26062128

RESUMO

Seventeen isoflavonoids from isoflavone, isoflavanone and isoflavan classes are selected from Dalbergia parviflora. The ChEMBL database is representative from these molecules, most of which result highly drug-like. Binary rules appear risky for the selection of compounds with high antioxidant capacity in complementary xanthine/xanthine oxidase, ORAC, and DPPH model assays. Isoflavonoid structure-activity analysis shows the most important properties (log P, log D, pKa, QED, PSA, NH + OH ≈ HBD, N + O ≈ HBA). Some descriptors (PSA, HBD) are detected as more important than others (size measure Mw, HBA). Linear and nonlinear models of antioxidant potency are obtained. Weak nonlinear relationships appear between log P, etc. and antioxidant activity. The different capacity trends for the three complementary assays are explained. Isoflavonoids potency depends on the chemical form that determines their solubility. Results from isoflavonoids analysis will be useful for activity prediction of new sets of flavones and to design drugs with antioxidant capacity, which will prove beneficial for health with implications for antiageing therapy.


Assuntos
Antioxidantes/química , Isoflavonas/química , Relação Quantitativa Estrutura-Atividade , Antioxidantes/farmacologia , Dalbergia/química , Isoflavonas/farmacologia , Oxirredução
14.
Curr Top Med Chem ; 15(18): 1901-13, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25961520

RESUMO

The problem in this work is the computational characterization of cyclodextrins, crown ethers and hyaluronan (HA) as hosts of inclusion complexes for nanosized drug delivery vehicles in pharmaceutical formulations. The difficulty is addressed through a computational study of some thermodynamic, geometric and topological properties of the hosts. The calculated properties of oligosaccharides of D-glucopyranoses allow these to act as co-solvents of polyanions in water. In crown ethers, the central channel is computed. Mucoadhesive polymer HA in formulations releases drugs in mucosas. Geometric, topological and fractal analyses are carried out with code TOPO. Reference calculations are performed with code GEPOL. From HA to HA·3Ca and hydrate, the hydrophilic solvent-accessible surface varies with the count of H-bonds. The fractal dimension rises. The dimension of external atoms rises resulting 1.725 for HA. It rises going to HA·3Ca and hydrate. Nonburied minus molecular dimension rises and decays. Hydrate globularity is lower than O(water), Ca(2+) and O(HA). Ca(2+) rugosity is smaller than for hydrate, O(HA) and O(water). Ca(2+) and O(water) accessibilities are greater than hydrate. Conclusions are drawn on: (1) the relative stability of linear/cyclic and shorter/larger polymers; (2) the atomic analysis of properties allows determining the atoms with maximum reactivity.


Assuntos
Éteres de Coroa/química , Ciclodextrinas/química , Sistemas de Liberação de Medicamentos , Ácido Hialurônico/química , Nanoestruturas/química , Química Farmacêutica , Estrutura Molecular , Tamanho da Partícula
15.
Phytochemistry ; 116: 305-313, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26024957

RESUMO

A set of 71 triterpenoid and steroid compounds from Ganoderma were periodically classified using a procedure based on information entropy with artificial intelligence. Six features were used in hierarchical order to classify the triterpenoids and steroids structurally. The phytochemicals belonging to the same group in the periodic table present similar antioxidant activity, and those compounds belonging to the same period exhibit maximum resemblance. The periodic classification is related to the experimental bioactivity and antioxidant potency data that are available in the literature: a steroid with a three-ketone group conjugated with two carbon-carbon double bonds in the right side of the periodic table exhibits the greatest antioxidant activity.


Assuntos
Antioxidantes/isolamento & purificação , Ganoderma/química , Esteroides/isolamento & purificação , Triterpenos/isolamento & purificação , Algoritmos , Antioxidantes/química , Inteligência Artificial , Medicamentos de Ervas Chinesas/química , Entropia , Estrutura Molecular , Esteroides/química , Esteroides/farmacologia , Relação Estrutura-Atividade , Triterpenos/química , Triterpenos/farmacologia
16.
Eur J Med Chem ; 96: 238-44, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25884114

RESUMO

Two-dimensional bond-based bilinear indices and linear discriminant analysis are used in this report to perform a quantitative structure-activity relationship study to identify new trypanosomicidal compounds. A data set of 440 organic chemicals, 143 with antitrypanosomal activity and 297 having other clinical uses, is used to develop the theoretical models. Two discriminant models, computed using bond-based bilinear indices, are developed and both show accuracies higher than 86% for training and test sets. The stochastic model correctly indentifies nine out of eleven compounds of a set of organic chemicals obtained from our synthetic collaborators. The in vitro antitrypanosomal activity of this set against epimastigote forms of Trypanosoma cruzi is assayed. Both models show a good agreement between theoretical predictions and experimental results. Three compounds showed IC50 values for epimastigote elimination (AE) lower than 50 µM, while for the benznidazole the IC50 = 54.7 µM which was used as reference compound. The value of IC50 for cytotoxicity of these compounds is at least 5 times greater than their value of IC50 for AE. Finally, we can say that, the present algorithm constitutes a step forward in the search for efficient ways of discovering new antitrypanosomal compounds.


Assuntos
Avaliação Pré-Clínica de Medicamentos , Relação Quantitativa Estrutura-Atividade , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Animais , Células Cultivadas , Análise Discriminante , Relação Dose-Resposta a Droga , Macrófagos/efeitos dos fármacos , Camundongos , Estrutura Molecular , Processos Estocásticos , Tripanossomicidas/química
17.
Molecules ; 19(6): 7388-414, 2014 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-24905607

RESUMO

Pesticide residues in wine were analyzed by liquid chromatography-tandem mass spectrometry. Retentions are modelled by structure-property relationships. Bioplastic evolution is an evolutionary perspective conjugating effect of acquired characters and evolutionary indeterminacy-morphological determination-natural selection principles; its application to design co-ordination index barely improves correlations. Fractal dimensions and partition coefficient differentiate pesticides. Classification algorithms are based on information entropy and its production. Pesticides allow a structural classification by nonplanarity, and number of O, S, N and Cl atoms and cycles; different behaviours depend on number of cycles. The novelty of the approach is that the structural parameters are related to retentions. Classification algorithms are based on information entropy. When applying procedures to moderate-sized sets, excessive results appear compatible with data suffering a combinatorial explosion. However, equipartition conjecture selects criterion resulting from classification between hierarchical trees. Information entropy permits classifying compounds agreeing with principal component analyses. Periodic classification shows that pesticides in the same group present similar properties; those also in equal period, maximum resemblance. The advantage of the classification is to predict the retentions for molecules not included in the categorization. Classification extends to phenyl/sulphonylureas and the application will be to predict their retentions.


Assuntos
Resíduos de Praguicidas/análise , Praguicidas/análise , Compostos de Sulfonilureia/análise , Cromatografia Líquida , Estrutura Molecular , Espectrometria de Massas em Tandem , Vinho/análise
18.
Curr Top Med Chem ; 14(12): 1494-501, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24853560

RESUMO

The tyrosinase enzyme (EC 1.14.18.1) is an oxidoreductase inside the general enzyme classification and is involved in the oxidation and reduction process in the epidermis. These chemical reactions that the enzyme catalyzes are of principal importance in the melanogenesis process. This process of melanogenesis is related to the melanin formation, a heteropolymer of indolic nature that provides the different tonalities in the skin and helps to the protection from the ultraviolet radiation. However, a pigment overproduction, come up by the action of the tyrosinase, can cause different disorders in the skin related to the hyperpigmentation. Several studies mainly focused on the characteristics of the enzyme have been reported. In this work, an approximation to general aspects related to this enzyme is made. Besides, it is treated the researches that have been published in the part of the biochemical anatomy dealing with diseases associated with this protein (melanogenesis), its active place and its physiological states, the molecular mechanism, the methods carried out to detect the inhibitory activity, and the used substrates.


Assuntos
Inibidores Enzimáticos/farmacologia , Monofenol Mono-Oxigenase/antagonistas & inibidores , Animais , Inibidores Enzimáticos/química , Humanos , Modelos Moleculares , Estrutura Molecular , Monofenol Mono-Oxigenase/química , Monofenol Mono-Oxigenase/metabolismo , Relação Estrutura-Atividade
19.
J Mol Model ; 20(6): 2263, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24869779

RESUMO

Carbon nanobud (CNB), a hybrid material consisting of single-wall C-nanotubes (CNTs) (SWNTs) with covalently attached fullerenes, in cluster form is discussed in organic solvents. Theories are developed based on bundlet and droplet models describing size-distribution functions. Phenomena present a unified explanation in bundlet model in which free energy of CNBs involved in cluster is combined from two parts: a volume one proportional to the number of molecules n in aggregate and a surface one, to n(1/2). Bundlet model enables describing distribution function of CNB clusters by size. From purely geometrical considerations bundlet (SWNT/CNB) and droplet (fullerene) models predict dissimilar behaviors. Interaction-energy parameters of CNBs are taken from C60. A C60/SWNT in-between behavior is expected; however, properties of CNBs result closer to SWNTs. Smaller CNB clusters result less stable but greater ones are more stable than SWNT bundles. The solubility decays with temperature result smaller for SWNT/CNB than C60 in agreement with lower number of units in aggregates. Discrepancy between the experimental data of heat of solution of fullerenes and CNT/CNBs is ascribed to sharp concentration dependence of heat of solution. Diffusion coefficient decays with temperature and results greater for CNB than SWNT or C60. Clusters (C60)13 and SWNT/CNB7 are representative of droplet and bundlet models.


Assuntos
Simulação por Computador , Fulerenos/química , Modelos Químicos , Modelos Moleculares , Nanotubos de Carbono/química , Solventes/química , Análise por Conglomerados , Estrutura Molecular , Tamanho da Partícula , Solubilidade , Relação Estrutura-Atividade , Propriedades de Superfície , Temperatura
20.
J Environ Sci Health B ; 49(6): 400-7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24762177

RESUMO

The high-performance liquid-chromatographic retentions of red-wine pesticide residues are modeled by structure-property relationships. The effect of different types of features is analyzed: geometric, lipophilic, etc. The properties are fractal dimensions, partition coefficient, etc., in linear and nonlinear correlation models. Biological plastic evolution is an evolutionary perspective conjugating the effect of acquired characters and relations that emerge among the principles of evolutionary indeterminacy, morphological determination and natural selection. It is applied to design the co-ordination index that is used to characterize pesticide retentions. The parameters used to calculate the co-ordination index are the molar formation enthalpy, molecular weight and surface area. The morphological and co-ordination indices barely improve the correlations. The fractal dimension averaged for non­buried atoms, partition coefficient, etc. distinguishes the pesticide molecular structures. The structural and constituent classification is based on nonplanarity, and the number of cycles, and O, S, N and Cl atoms. Different behavior depends on the number of cycles.


Assuntos
Praguicidas/química , Relação Quantitativa Estrutura-Atividade , Cromatografia Líquida , Fractais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA