Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
NPJ Vaccines ; 9(1): 74, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582771

RESUMO

Recombinant native-like HIV-1 envelope glycoprotein (Env) trimers are used in candidate vaccines aimed at inducing broadly neutralizing antibodies. While state-of-the-art SOSIP or single-chain Env designs can be expressed as native-like trimers, undesired monomers, dimers and malformed trimers that elicit non-neutralizing antibodies are also formed, implying that these designs could benefit from further modifications for gene-based vaccination approaches. Here, we describe the triple tandem trimer (TTT) design, in which three Env protomers are genetically linked in a single open reading frame and express as native-like trimers. Viral vectored Env TTT induced similar neutralization titers but with a higher proportion of trimer-specific responses. The TTT design was also applied to generate influenza hemagglutinin (HA) trimers without the need for trimerization domains. Additionally, we used TTT to generate well-folded chimeric Env and HA trimers that harbor protomers from three different strains. In summary, the TTT design is a useful platform for the design of HIV-1 Env and influenza HA immunogens for a multitude of vaccination strategies.

2.
Protein Sci ; 33(4): e4974, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38533540

RESUMO

Enveloped viruses carry one or multiple proteins with receptor-binding functionalities. Functional receptors can be glycans, proteinaceous, or both; therefore, recombinant protein approaches are instrumental in attaining new insights regarding viral envelope protein receptor-binding properties. Visualizing and measuring receptor binding typically entails antibody detection or direct labeling, whereas direct fluorescent fusions are attractive tools in molecular biology. Here, we report a suite of distinct fluorescent fusions, both N- and C-terminal, for influenza A virus hemagglutinins and SARS-CoV-2 spike RBD. The proteins contained three or six fluorescent protein barrels and were applied directly to cells to assess receptor binding properties.


Assuntos
Glicoproteína da Espícula de Coronavírus , Proteínas do Envelope Viral , Proteínas do Envelope Viral/química , Glicoproteína da Espícula de Coronavírus/química , Ligação Proteica , Polissacarídeos/metabolismo , Proteínas Recombinantes/metabolismo
3.
Cell Rep Methods ; 3(6): 100509, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37426749

RESUMO

Understanding antibody-antigen interactions in a polyclonal immune response in humans and animal models is critical for rational vaccine design. Current approaches typically characterize antibodies that are functionally relevant or highly abundant. Here, we use photo-cross-linking and single-particle electron microscopy to increase antibody detection and unveil epitopes of low-affinity and low-abundance antibodies, leading to a broader structural characterization of polyclonal immune responses. We employed this approach across three different viral glycoproteins and showed increased sensitivity of detection relative to currently used methods. Results were most noticeable in early and late time points of a polyclonal immune response. Additionally, the use of photo-cross-linking revealed intermediate antibody binding states and demonstrated a distinctive way to study antibody binding mechanisms. This technique can be used to structurally characterize the landscape of a polyclonal immune response of patients in vaccination or post-infection studies at early time points, allowing for rapid iterative design of vaccine immunogens.


Assuntos
Anticorpos Neutralizantes , Vacinas , Animais , Humanos , Epitopos/química , Vacinação
4.
PLoS Pathog ; 18(11): e1010945, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36395347

RESUMO

Broadly neutralizing antibodies (bNAbs) have remarkable breadth and potency against most HIV-1 subtypes and are able to prevent HIV-1 infection in animal models. However, bNAbs are extremely difficult to induce by vaccination. Defining the developmental pathways towards neutralization breadth can assist in the design of strategies to elicit protective bNAb responses by vaccination. Here, HIV-1 envelope glycoproteins (Env)-specific IgG+ B cells were isolated at various time points post infection from an HIV-1 infected elite neutralizer to obtain monoclonal antibodies (mAbs). Multiple antibody lineages were isolated targeting distinct epitopes on Env, including the gp120-gp41 interface, CD4-binding site, silent face and V3 region. The mAbs each neutralized a diverse set of HIV-1 strains from different clades indicating that the patient's remarkable serum breadth and potency might have been the result of a polyclonal mixture rather than a single bNAb lineage. High-resolution cryo-electron microscopy structures of the neutralizing mAbs (NAbs) in complex with an Env trimer generated from the same individual revealed that the NAbs used multiple strategies to neutralize the virus; blocking the receptor binding site, binding to HIV-1 Env N-linked glycans, and disassembly of the trimer. These results show that diverse NAbs can complement each other to achieve a broad and potent neutralizing serum response in HIV-1 infected individuals. Hence, the induction of combinations of moderately broad NAbs might be a viable vaccine strategy to protect against a wide range of circulating HIV-1 viruses.


Assuntos
Soropositividade para HIV , HIV-1 , Animais , Anticorpos Amplamente Neutralizantes , Microscopia Crioeletrônica , Anticorpos Monoclonais , Proteína gp120 do Envelope de HIV
5.
Science ; 378(6617): 263-269, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36264808

RESUMO

Hepatitis C virus (HCV) infection is a leading cause of chronic liver disease, cirrhosis, and hepatocellular carcinoma in humans and afflicts more than 58 million people worldwide. The HCV envelope E1 and E2 glycoproteins are essential for viral entry and comprise the primary antigenic target for neutralizing antibody responses. The molecular mechanisms of E1E2 assembly, as well as how the E1E2 heterodimer binds broadly neutralizing antibodies, remain elusive. Here, we present the cryo-electron microscopy structure of the membrane-extracted full-length E1E2 heterodimer in complex with three broadly neutralizing antibodies-AR4A, AT1209, and IGH505-at ~3.5-angstrom resolution. We resolve the interface between the E1 and E2 ectodomains and deliver a blueprint for the rational design of vaccine immunogens and antiviral drugs.


Assuntos
Hepacivirus , Hepatite C , Proteínas do Envelope Viral , Humanos , Antivirais/química , Anticorpos Amplamente Neutralizantes , Microscopia Crioeletrônica , Hepacivirus/química , Hepacivirus/imunologia , Hepatite C/virologia , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/imunologia , Multimerização Proteica , Vacinas contra Hepatite Viral/química , Vacinas contra Hepatite Viral/imunologia
6.
Immunity ; 55(9): 1693-1709.e8, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-35952670

RESUMO

Human broadly neutralizing antibodies (bnAbs) targeting the hemagglutinin stalk of group 1 influenza A viruses (IAVs) are biased for IGHV1-69 alleles that use phenylalanine (F54) but not leucine (L54) within their CDRH2 loops. Despite this, we demonstrated that both alleles encode for human IAV bnAbs that employ structurally convergent modes of contact to the same epitope. To resolve differences in lineage expandability, we compared F54 versus L54 as substrate within humanized mice, where antibodies develop with human-like CDRH3 diversity but are restricted to single VH genes. While both alleles encoded for bnAb precursors, only F54 IGHV1-69 supported elicitation of heterosubtypic serum bnAbs following immunization with a stalk-only nanoparticle vaccine. L54 IGHV1-69 was unproductive, co-encoding for anergic B cells and autoreactive stalk antibodies that were cleared from B cell memory. Moreover, human stalk antibodies also demonstrated L54-dependent autoreactivity. Therefore, IGHV1-69 polymorphism, which is skewed ethnically, gates tolerance and vaccine expandability of influenza bnAbs.


Assuntos
Vírus da Influenza A , Vacinas contra Influenza , Influenza Humana , Alelos , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Anticorpos Amplamente Neutralizantes , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Influenza Humana/prevenção & controle , Camundongos
7.
NPJ Vaccines ; 7(1): 27, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35228534

RESUMO

Soluble HIV-1 envelope glycoprotein (Env) immunogens are a prime constituent of candidate vaccines designed to induce broadly neutralizing antibodies. Several lines of evidence suggest that enhancing Env immunogen thermostability can improve neutralizing antibody (NAb) responses. Here, we generated BG505 SOSIP.v9 trimers, which displayed virtually no reactivity with non-neutralizing antibodies and showed increased global and epitope thermostability, compared to previous BG505 SOSIP versions. Chemical crosslinking of BG505 SOSIP.v9 further increased the melting temperature to 91.3 °C, which is almost 25 °C higher than that of the prototype SOSIP.664 trimer. Next, we compared the immunogenicity of a palette of BG505-based SOSIP trimers with a gradient of thermostabilities in rabbits. We also included SOSIP.v9 proteins in which a strain-specific immunodominant epitope was masked by glycans to redirect the NAb response to other subdominant epitopes. We found that increased trimer thermostability correlated with increased potency and consistency of the autologous NAb response. Furthermore, glycan masking steered the NAb response to subdominant epitopes without decreasing the potency of the autologous NAb response. In summary, SOSIP.v9 trimers and their glycan masked versions represent an improved platform for HIV-1 Env based vaccination strategies.

8.
J Virol ; 95(24): e0053221, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34586861

RESUMO

The HIV-1 envelope glycoprotein (Env) trimer is responsible for viral entry into target cells and is the sole target of neutralizing antibodies. The Env protein is therefore the focus of HIV-1 vaccine design. Env consists of two noncovalently linked subunits (gp120 and gp41) that form a trimer of heterodimers and this 6-subunit complex is metastable and conformationally flexible. Several approaches have been pursued to stabilize the Env trimer for vaccine purposes, which include structure-based design, high-throughput screening, and selection by mammalian cell display. Here, we employed directed virus evolution to improve Env trimer stability. Accordingly, we deliberately destabilized the Env gp120-gp41 interface by mutagenesis in the context of replicating HIV-1 LAI virus and virus evolution over time. We identified compensatory changes that pointed at convergent evolution, as they were largely restricted to specific Env regions, namely, the V1V2 domain of gp120 and the HR1 and HR2 domain of gp41. Specifically, S614G in V1V2 and Q567R in HR1 were frequently identified. Interestingly, the majority of the compensatory mutations were at distant locations from the original mutations and most likely strengthen intersubunit interactions. These results show how the virus can overcome Env instability and illuminate the regions that play a dominant role in Env stability. IMPORTANCE A successful HIV-1 vaccine most likely requires an envelope glycoprotein (Env) component, as Env is the only viral protein on the surface of the virus and the target for neutralizing antibodies. However, HIV Env is metastable and flexible because of the weak interactions between the Env subunits, complicating the generation of recombinant mimics of native Env. Here, we used directed viral evolution to study Env stability. We deliberately destabilized the interface between Env subunits and explored the capacity of the virus to repair trimer instability by evolution. We identified compensatory mutations that converged in specific Env locations: the apex and the trimer interface. Selected mutations enhanced the stability of recombinant soluble Env trimer proteins. These results provided clues on understanding the structural mechanisms involved in Env trimer stability, which can guide future immunogen design.


Assuntos
Evolução Molecular , Proteína gp120 do Envelope de HIV/metabolismo , Proteína gp41 do Envelope de HIV/metabolismo , HIV-1/genética , Anticorpos Neutralizantes , Células HEK293 , Proteína gp120 do Envelope de HIV/genética , Proteína gp41 do Envelope de HIV/genética , Humanos , Mutagênese , Mutação , Conformação Proteica , Multimerização Proteica
9.
J Virol ; 94(24)2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-32999024

RESUMO

The induction of broadly neutralizing antibodies (bNAbs) is a major goal in vaccine research. HIV-1-infected individuals that develop exceptionally strong bNAb responses, termed elite neutralizers, can inform vaccine design by providing blueprints for the induction of similar bNAb responses. We describe a new recombinant native-like envelope glycoprotein (Env) SOSIP trimer, termed AMC009, based on the viral founder sequences of an elite neutralizer. The subtype B AMC009 SOSIP protein formed stable native-like trimers that displayed multiple bNAb epitopes. Overall, its structure at 4.3-Å resolution was similar to that of BG505 SOSIP.664. The AMC009 trimer resembled one from a second elite neutralizer, AMC011, in having a dense and complete glycan shield. When tested as immunogens in rabbits, the AMC009 trimers did not induce autologous neutralizing antibody (NAb) responses efficiently while the AMC011 trimers did so very weakly, outcomes that may reflect the completeness of their glycan shields. The AMC011 trimer induced antibodies that occasionally cross-neutralized heterologous tier 2 viruses, sometimes at high titer. Cross-neutralizing antibodies were more frequently elicited by a trivalent combination of AMC008, AMC009, and AMC011 trimers, all derived from subtype B viruses. Each of these three individual trimers could deplete the NAb activity from the rabbit sera. Mapping the polyclonal sera by electron microscopy revealed that antibodies of multiple specificities could bind to sites on both autologous and heterologous trimers. These results advance our understanding of how to use Env trimers in multivalent vaccination regimens and the immunogenicity of trimers derived from elite neutralizers.IMPORTANCE Elite neutralizers, i.e., individuals who developed unusually broad and potent neutralizing antibody responses, might serve as blueprints for HIV-1 vaccine design. Here, we studied the immunogenicity of native-like recombinant envelope glycoprotein (Env) trimers based on viral sequences from elite neutralizers. While immunization with single trimers from elite neutralization did not recapitulate the breadth and potency of neutralization observed in these infected individuals, a combination of three subtype B Env trimers from elite neutralizers resulted in some neutralization breadth within subtype B viruses. These results should guide future efforts to design vaccines to induce broadly neutralizing antibodies.


Assuntos
Anticorpos Neutralizantes/imunologia , Antígenos Virais/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Vacinas contra a AIDS/imunologia , Animais , Anticorpos Neutralizantes/química , Antígenos Virais/química , Microscopia Crioeletrônica , Epitopos/imunologia , Glicoproteínas , Infecções por HIV/virologia , Imunização , Coelhos , Proteínas Recombinantes/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética
10.
PLoS Pathog ; 15(7): e1007920, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31306470

RESUMO

The HIV-1 envelope glycoprotein (Env) trimer is located on the surface of the virus and is the target of broadly neutralizing antibodies (bNAbs). Recombinant native-like soluble Env trimer mimetics, such as SOSIP trimers, have taken a central role in HIV-1 vaccine research aimed at inducing bNAbs. We therefore performed a direct and thorough comparison of a full-length unmodified Env trimer containing the transmembrane domain and the cytoplasmic tail, with the sequence matched soluble SOSIP trimer, both based on an early Env sequence (AMC011) from an HIV+ individual that developed bNAbs. The structures of the full-length AMC011 trimer bound to either bNAb PGT145 or PGT151 were very similar to the structures of SOSIP trimers. Antigenically, the full-length and SOSIP trimers were comparable, but in contrast to the full-length trimer, the SOSIP trimer did not bind at all to non-neutralizing antibodies, most likely as a consequence of the intrinsic stabilization of the SOSIP trimer. Furthermore, the glycan composition of full-length and SOSIP trimers was similar overall, but the SOSIP trimer possessed slightly less complex and less extensively processed glycans, which may relate to the intrinsic stabilization as well as the absence of the membrane tether. These data provide insights into how to best use and improve membrane-associated full-length and soluble SOSIP HIV-1 Env trimers as immunogens.


Assuntos
HIV-1/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Biomimética , Anticorpos Amplamente Neutralizantes , Microscopia Crioeletrônica , Anticorpos Anti-HIV , Antígenos HIV/química , Antígenos HIV/genética , Antígenos HIV/imunologia , HIV-1/genética , HIV-1/imunologia , Humanos , Modelos Moleculares , Polissacarídeos/química , Estabilidade Proteica , Estrutura Quaternária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Solubilidade , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia
11.
Retrovirology ; 15(1): 63, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30208933

RESUMO

An effective HIV-1 vaccine probably will need to be able to induce broadly neutralizing HIV-1 antibodies (bNAbs) in order to be efficacious. The many bNAbs that have been isolated from HIV-1 infected patients illustrate that the human immune system is able to elicit this type of antibodies. The elucidation of the structure of the HIV-1 envelope glycoprotein (Env) trimer has further fueled the search for Env immunogens that induce bNAbs, but while native Env trimer mimetics are often capable of inducing strain-specific neutralizing antibodies (NAbs) against the parental virus, they have not yet induced potent bNAb responses. To improve the performance of Env trimer immunogens, researchers have studied the immune responses that Env trimers have induced in animals; they have evaluated how to best use Env trimers in various immunization regimens; and they have engineered increasingly stabilized Env trimer variants. Here, we review the different approaches that have been used to increase the stability of HIV-1 Env trimer immunogens with the aim of improving the induction of NAbs. In particular, we draw parallels between the various approaches to stabilize Env trimers and ones that have been used by nature in extremophile microorganisms in order to survive in extreme environmental conditions.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , HIV-1/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Vacinas contra a AIDS/imunologia , Animais , Anticorpos Neutralizantes/biossíntese , Epitopos/imunologia , Anticorpos Anti-HIV/biossíntese , HIV-1/imunologia , Humanos , Imunização , Modelos Moleculares , Multimerização Proteica , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética
12.
J Glob Antimicrob Resist ; 13: 131-134, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29307861

RESUMO

OBJECTIVES: The aim of this study was to establish the prevalence of the most common molecular mechanisms involved in tetracycline resistance as well as their relationship with plasmid incompatibility (Inc) groups in a collection of Shigella spp. causing traveller's diarrhoea. METHODS: Tetracycline susceptibility was established in 187 Shigella spp. (74 Shigella flexneri and 113 Shigella sonnei), of which 153 isolates were recovered as a confirmed cause of traveller's diarrhoea. The prevalence of the tet(A), tet(B) and tet(G) genes was analysed by PCR. Eighteen plasmid Inc groups was determined in a subset of 59 isolates. RESULTS: Among 154 tetracycline-resistant isolates, 122 (79.2%) harboured at least tet(A) or tet(B). The tet(B) gene was the most frequently detected, being present in 70 isolates (45.5%), whilst tet(A) was detected in 57 isolates (37.0%). The tet(G) gene was present in only 11 (7.2%) isolates. Moreover, the tet(A) gene was more frequent in S. sonnei (P=0.0007), whilst the tet(B) gene was more frequent in S. flexneri (P<0.0001). Plasmids belonging to Inc group B (P<0.05) were significantly more frequent among S. flexneri, whilst those belonging to groups K, FIC and FIIA (P<0.05) were preferentially detected among S. sonnei. CONCLUSION: The prevalence of the tet(A) and tet(B) genes differed between S. sonnei and S. flexneri. Moreover, the prevalence of plasmid Inc groups in S. flexneri and S. sonnei differed. However, no relationship was found between the two phenomena.


Assuntos
Antibacterianos/farmacologia , Antiporters/genética , Proteínas de Bactérias/genética , Shigella flexneri/efeitos dos fármacos , Shigella sonnei/efeitos dos fármacos , Resistência a Tetraciclina/genética , Disenteria Bacilar/microbiologia , Humanos , Testes de Sensibilidade Microbiana , Plasmídeos/genética , Shigella flexneri/genética , Shigella sonnei/genética
13.
J Virol ; 92(8)2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29367243

RESUMO

Recombinant soluble HIV-1 envelope glycoprotein (Env) SOSIP trimers are a design platform for inducing broadly neutralizing antibodies (bNAbs) by vaccination. To date, these and alternative designs of native-like trimers, given singly or in pairs, have not induced bNAbs in test animals such as rabbits or macaques. Here, we have evaluated whether trivalent and tetravalent combinations of SOSIP trimers from clades A, B, and C, delivered simultaneously or sequentially, induce better neutralizing antibody responses in rabbits than when given alone. None of the tested formulations led to the induction of bNAbs. We found that BG505 clade A trimers dominated the autologous NAb responses induced by combinations, which probably relates to the presence of immunodominant glycan holes on the BG505 trimer. Furthermore, autologous NAb responses to all individual trimers were reduced when they were delivered in combinations compared with when delivered alone, suggesting that immunogen interference had occurred. Finally, in a sequential regimen, a heterologous clade C trimer cross-boosted NAb responses that were primed by earlier immunizations with clade A and B trimers. Taken together, these findings should allow us to improve the design of immunization regimens based on native-like HIV-1 Env trimers.IMPORTANCE A successful HIV-1 vaccine most probably requires a trimeric envelope glycoprotein (Env) component, as Env is the only viral protein on the surface of the virus and therefore the only target for neutralizing antibodies. Native-like Env trimers can induce strain-specific neutralizing antibodies but not yet broadly neutralizing antibodies. To try to broaden the antibody response, we immunized rabbits with soluble native-like Env trimers from three different clades using monovalent, multivalent, and sequential regimens. We found that the neutralizing antibody response against each immunogen was reduced when the immunogens were delivered in combination or sequentially compared to the monovalent regimen. In contrast, when the Env trimers from different clades were delivered sequentially, the neutralizing antibody response could be cross-boosted. Although the combination of native-like Env trimers from different clades did not induce broadly neutralizing antibodies, the results provide clues on how to use native-like trimers in vaccination experiments.


Assuntos
Vacinas contra a AIDS/imunologia , HIV-1/imunologia , Imunogenicidade da Vacina , Multimerização Proteica , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Animais , Humanos , Coelhos
14.
Cell Rep ; 20(8): 1805-1817, 2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-28834745

RESUMO

The production of native-like recombinant versions of the HIV-1 envelope glycoprotein (Env) trimer requires overcoming the natural flexibility and instability of the complex. The engineered BG505 SOSIP.664 trimer mimics the structure and antigenicity of native Env. Here, we describe how the introduction of new disulfide bonds between the glycoprotein (gp)120 and gp41 subunits of SOSIP trimers of the BG505 and other genotypes improves their stability and antigenicity, reduces their conformational flexibility, and helps maintain them in the unliganded conformation. The resulting next-generation SOSIP.v5 trimers induce strong autologous tier-2 neutralizing antibody (NAb) responses in rabbits. In addition, the BG505 SOSIP.v6 trimers induced weak heterologous NAb responses against a subset of tier-2 viruses that were not elicited by the prototype BG505 SOSIP.664. These stabilization methods can be applied to trimers from multiple genotypes as components of multivalent vaccines aimed at inducing broadly NAbs (bNAbs).


Assuntos
HIV-1/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Animais , Humanos , Coelhos
15.
Immunity ; 46(6): 1073-1088.e6, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28636956

RESUMO

The development of stabilized recombinant HIV envelope trimers that mimic the virion surface molecule has increased enthusiasm for a neutralizing antibody (nAb)-based HIV vaccine. However, there is limited experience with recombinant trimers as immunogens in nonhuman primates, which are typically used as a model for humans. Here, we tested multiple immunogens and immunization strategies head-to-head to determine their impact on the quantity, quality, and kinetics of autologous tier 2 nAb development. A bilateral, adjuvanted, subcutaneous immunization protocol induced reproducible tier 2 nAb responses after only two immunizations 8 weeks apart, and these were further enhanced by a third immunization with BG505 SOSIP trimer. We identified immunogens that minimized non-neutralizing V3 responses and demonstrated that continuous immunogen delivery could enhance nAb responses. nAb responses were strongly associated with germinal center reactions, as assessed by lymph node fine needle aspiration. This study provides a framework for preclinical and clinical vaccine studies targeting nAb elicitation.


Assuntos
Vacinas contra a AIDS/imunologia , Anticorpos Neutralizantes/uso terapêutico , Centro Germinativo/imunologia , Anticorpos Anti-HIV/uso terapêutico , Infecções por HIV/terapia , HIV-1/imunologia , Animais , Células Cultivadas , Epitopos de Linfócito B/química , Epitopos de Linfócito B/imunologia , Centro Germinativo/virologia , Infecções por HIV/imunologia , Humanos , Imunização , Injeções Subcutâneas , Primatas , Multimerização Proteica , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia
16.
Cell Rep ; 17(9): 2195-2209, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27880897

RESUMO

Generating tier 2 HIV-neutralizing antibody (nAb) responses by immunization remains a challenging problem, and the immunological barriers to induction of such responses with Env immunogens remain unclear. Here, some rhesus monkeys developed autologous tier 2 nAbs upon HIV Env trimer immunization (SOSIP.v5.2) whereas others did not. This was not because HIV Env trimers were immunologically silent because all monkeys made similar ELISA-binding antibody responses; the key difference was nAb versus non-nAb responses. We explored the immunological barriers to HIV nAb responses by combining a suite of techniques, including longitudinal lymph node fine needle aspirates. Unexpectedly, nAb development best correlated with booster immunization GC B cell magnitude and Tfh characteristics of the Env-specific CD4 T cells. Notably, these factors distinguished between successful and unsuccessful antibody responses because GC B cell frequencies and stoichiometry to GC Tfh cells correlated with nAb development, but did not correlate with total Env Ab binding titers.


Assuntos
Anticorpos Neutralizantes/imunologia , Formação de Anticorpos/imunologia , Centro Germinativo/imunologia , HIV-1/imunologia , Multimerização Proteica , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Animais , Linfócitos B/imunologia , Biópsia por Agulha Fina , Linhagem da Célula , Células Clonais , Imunização , Macaca mulatta , Ligação Proteica , Linfócitos T Auxiliares-Indutores/imunologia
17.
J Immunol ; 197(3): 994-1002, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27335502

RESUMO

A range of current candidate AIDS vaccine regimens are focused on generating protective HIV-neutralizing Ab responses. Many of these efforts rely on the rhesus macaque animal model. Understanding how protective Ab responses develop and how to increase their efficacy are both major knowledge gaps. Germinal centers (GCs) are the engines of Ab affinity maturation. GC T follicular helper (Tfh) CD4 T cells are required for GCs. Studying vaccine-specific GC Tfh cells after protein immunizations has been challenging, as Ag-specific GC Tfh cells are difficult to identify by conventional intracellular cytokine staining. Cytokine production by GC Tfh cells may be intrinsically limited in comparison with other Th effector cells, as the biological role of a GC Tfh cell is to provide help to individual B cells within the GC, rather than secreting large amounts of cytokines bathing a tissue. To test this idea, we developed a cytokine-independent method to identify Ag-specific GC Tfh cells. RNA sequencing was performed using TCR-stimulated GC Tfh cells to identify candidate markers. Validation experiments determined CD25 (IL-2Rα) and OX40 to be highly upregulated activation-induced markers (AIM) on the surface of GC Tfh cells after stimulation. In comparison with intracellular cytokine staining, the AIM assay identified >10-fold more Ag-specific GC Tfh cells in HIV Env protein-immunized macaques (BG505 SOSIP). CD4 T cells in blood were also studied. In summary, AIM demonstrates that Ag-specific GC Tfh cells are intrinsically stingy producers of cytokines, which is likely an essential part of their biological function.


Assuntos
Biomarcadores/análise , Infecções por HIV/imunologia , Técnicas Imunológicas/métodos , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Citocinas/análise , Citocinas/biossíntese , Modelos Animais de Doenças , Citometria de Fluxo , Centro Germinativo/citologia , Centro Germinativo/imunologia , Humanos , Macaca mulatta
18.
Cell ; 163(7): 1702-15, 2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-26687358

RESUMO

The envelope glycoprotein trimer mediates HIV-1 entry into cells. The trimer is flexible, fluctuating between closed and more open conformations and sometimes sampling the fully open, CD4-bound form. We hypothesized that conformational flexibility and transient exposure of non-neutralizing, immunodominant epitopes could hinder the induction of broadly neutralizing antibodies (bNAbs). We therefore modified soluble Env trimers to stabilize their closed, ground states. The trimer variants were indeed stabilized in the closed conformation, with a reduced ability to undergo receptor-induced conformational changes and a decreased exposure of non-neutralizing V3-directed antibody epitopes. In rabbits, the stabilized trimers induced similar autologous Tier-1B or Tier-2 NAb titers to those elicited by the corresponding wild-type trimers but lower levels of V3-directed Tier-1A NAbs. Stabilized, closed trimers might therefore be useful components of vaccines aimed at inducing bNAbs.


Assuntos
Vacinas contra a AIDS/química , Vacinas contra a AIDS/imunologia , Animais , Anticorpos Neutralizantes , Epitopos/química , Proteína gp41 do Envelope de HIV/química , Proteína gp41 do Envelope de HIV/genética , HIV-1 , Interações Hidrofóbicas e Hidrofílicas , Imunoglobulina G/química , Modelos Moleculares , Mutagênese , Conformação Proteica , Coelhos , Produtos do Gene env do Vírus da Imunodeficiência Humana/química
19.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 10): 2099-108, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26457433

RESUMO

The HIV-1 envelope gp160 glycoprotein (Env) is a trimer of gp120 and gp41 heterodimers that mediates cell entry and is the primary target of the humoral immune response. Broadly neutralizing antibodies (bNAbs) to HIV-1 have revealed multiple epitopes or sites of vulnerability, but mapping of most of these sites is incomplete owing to a paucity of structural information on the full epitope in the context of the Env trimer. Here, a crystal structure of the soluble BG505 SOSIP gp140 trimer at 4.6 Šresolution with the bNAbs 8ANC195 and PGT128 reveals additional interactions in comparison to previous antibody-gp120 structures. For 8ANC195, in addition to previously documented interactions with gp120, a substantial interface with gp41 is now elucidated that includes extensive interactions with the N637 glycan. Surprisingly, removal of the N637 glycan did not impact 8ANC195 affinity, suggesting that the antibody has evolved to accommodate this glycan without loss of binding energy. PGT128 indirectly affects the N262 glycan by a domino effect, in which PGT128 binds to the N301 glycan, which in turn interacts with and repositions the N262 glycan, thereby illustrating the important role of neighboring glycans on epitope conformation and stability. Comparisons with other Env trimer and gp120 structures support an induced conformation for glycan N262, suggesting that the glycan shield is allosterically modified upon PGT128 binding. These complete epitopes of two broadly neutralizing antibodies on the Env trimer can now be exploited for HIV-1 vaccine design.


Assuntos
Anticorpos Neutralizantes/química , Epitopos/química , HIV-1/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Anticorpos Neutralizantes/imunologia , Cristalografia por Raios X , Epitopos/imunologia , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/imunologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/imunologia , Humanos , Modelos Moleculares , Polissacarídeos/química , Polissacarídeos/imunologia , Conformação Proteica , Multimerização Proteica , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia
20.
Proc Natl Acad Sci U S A ; 112(38): 11947-52, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26372963

RESUMO

A key challenge in the quest toward an HIV-1 vaccine is design of immunogens that can generate a broadly neutralizing antibody (bnAb) response against the enormous sequence diversity of the HIV-1 envelope glycoprotein (Env). We previously demonstrated that a recombinant, soluble, fully cleaved SOSIP.664 trimer based on the clade A BG505 sequence is a faithful antigenic and structural mimic of the native trimer in its prefusion conformation. Here, we sought clade C native-like trimers with comparable properties. We identified DU422 and ZM197M SOSIP.664 trimers as being appropriately thermostable (Tm of 63.4 °C and 62.7 °C, respectively) and predominantly native-like, as determined by negative-stain electron microscopy (EM). Size exclusion chromatography, ELISA, and surface plasmon resonance further showed that these trimers properly display epitopes for all of the major bnAb classes, including quaternary-dependent, trimer-apex (e.g., PGT145) and gp120/gp41 interface (e.g., PGT151) epitopes. A cryo-EM reconstruction of the ZM197M SOSIP.664 trimer complexed with VRC01 Fab against the CD4 binding site at subnanometer resolution revealed a striking overall similarity to its BG505 counterpart with expected local conformational differences in the gp120 V1, V2, and V4 loops. These stable clade C trimers contribute additional diversity to the pool of native-like Env immunogens as key components of strategies to induce bnAbs to HIV-1.


Assuntos
Desenho de Fármacos , HIV-1/imunologia , Multimerização Proteica , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Microscopia Crioeletrônica , Antígenos HIV/química , Antígenos HIV/imunologia , Humanos , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/imunologia , Modelos Moleculares , Coloração Negativa , Estabilidade Proteica , Solubilidade , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA