Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Redox Biol ; 61: 102630, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36796135

RESUMO

Type 2 diabetes mellitus (T2D) affects millions of people worldwide and is one of the leading causes of morbidity and mortality. The skeletal muscle (SKM) is one of the most important tissues involved in maintaining glucose homeostasis and substrate oxidation, and it undergoes insulin resistance in T2D. In this study, we identify the existence of alterations in the expression of mitochondrial aminoacyl-tRNA synthetases (mt-aaRSs) in skeletal muscle from two different forms of T2D: early-onset type 2 diabetes (YT2) (onset of the disease before 30 years of age) and the classical form of the disease (OT2). GSEA analysis from microarray studies revealed the repression of mitochondrial mt-aaRSs independently of age, which was validated by real-time PCR assays. In agreement with this, a reduced expression of several encoding mt-aaRSs was also detected in skeletal muscle from diabetic (db/db) mice but not in obese ob/ob mice. In addition, the expression of the mt-aaRSs proteins most relevant in the synthesis of mitochondrial proteins, threonyl-tRNA, and leucyl-tRNA synthetases (TARS2 and LARS2) were also repressed in muscle from db/db mice. It is likely that these alterations participate in the reduced expression of proteins synthesized in the mitochondria detected in db/db mice. We also document an increased iNOS abundance in mitochondrial-enriched muscle fractions from diabetic mice that may inhibit aminoacylation of TARS2 and LARS2 by nitrosative stress. Our results indicate a reduced expression of mt-aaRSs in skeletal muscle from T2D patients, which may participate in the reduced expression of proteins synthesized in mitochondria. An enhanced mitochondrial iNOS could play a regulatory role in diabetes.


Assuntos
Aminoacil-tRNA Sintetases , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Camundongos , Animais , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Experimental/metabolismo , Regulação para Baixo , Aminoacil-tRNA Sintetases/genética , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , RNA de Transferência/metabolismo
2.
Bioinformatics ; 38(10): 2934-2936, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35561195

RESUMO

SUMMARY: High-throughput sequencing of transfer RNAs (tRNA-Seq) is a powerful approach to characterize the cellular tRNA pool. Currently, however, analyzing tRNA-Seq datasets requires strong bioinformatics and programming skills. tRNAstudio facilitates the analysis of tRNA-Seq datasets and extracts information on tRNA gene expression, post-transcriptional tRNA modification levels, and tRNA processing steps. Users need only running a few simple bash commands to activate a graphical user interface that allows the easy processing of tRNA-Seq datasets in local mode. Output files include extensive graphical representations and associated numerical tables, and an interactive html summary report to help interpret the data. We have validated tRNAstudio using datasets generated by different experimental methods and derived from human cell lines and tissues that present distinct patterns of tRNA expression, modification and processing. AVAILABILITY AND IMPLEMENTATION: Freely available at https://github.com/GeneTranslationLab-IRB/tRNAstudio under an open-source GNU GPL v3.0 license. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
RNA de Transferência , Software , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Processamento Pós-Transcricional do RNA , RNA de Transferência/genética , Análise de Sequência de RNA/métodos
4.
Nucleic Acids Res ; 49(12): 7011-7034, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34125917

RESUMO

The modification of adenosine to inosine at the wobble position (I34) of tRNA anticodons is an abundant and essential feature of eukaryotic tRNAs. The expansion of inosine-containing tRNAs in eukaryotes followed the transformation of the homodimeric bacterial enzyme TadA, which generates I34 in tRNAArg and tRNALeu, into the heterodimeric eukaryotic enzyme ADAT, which modifies up to eight different tRNAs. The emergence of ADAT and its larger set of substrates, strongly influenced the tRNA composition and codon usage of eukaryotic genomes. However, the selective advantages that drove the expansion of I34-tRNAs remain unknown. Here we investigate the functional relevance of I34-tRNAs in human cells and show that a full complement of these tRNAs is necessary for the translation of low-complexity protein domains enriched in amino acids cognate for I34-tRNAs. The coding sequences for these domains require codons translated by I34-tRNAs, in detriment of synonymous codons that use other tRNAs. I34-tRNA-dependent low-complexity proteins are enriched in functional categories related to cell adhesion, and depletion in I34-tRNAs leads to cellular phenotypes consistent with these roles. We show that the distribution of these low-complexity proteins mirrors the distribution of I34-tRNAs in the phylogenetic tree.


Assuntos
Inosina/metabolismo , Biossíntese de Proteínas , RNA de Transferência/metabolismo , Adenosina Desaminase/genética , Adesão Celular , Processos de Crescimento Celular , Linhagem Celular , Códon , Eucariotos/genética , Feminino , Células HEK293 , Humanos , Domínios Proteicos/genética , Inibidores da Síntese de Proteínas/farmacologia , RNA Mensageiro/metabolismo , RNA de Transferência/química , Ribossomos/metabolismo
5.
Front Mol Biosci ; 8: 662620, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33937338

RESUMO

Extracellular RNAs (exRNAs) including abundant full length tRNAs and tRNA fragments (tRFs) have recently garnered attention as a promising source of biomarkers and a novel mediator in cell-to-cell communication in eukaryotes. Depending on the physiological state of cells, tRNAs/tRFs are released to the extracellular space either contained in extracellular vesicles (EVs) or free, through a mechanism that is largely unknown. In this perspective article, we propose that extracellular tRNAs (ex-tRNAs) and/or extracellular tRFs (ex-tRFs) are relevant paracrine signaling molecules whose activity depends on the mechanisms of release by source cells and capture by recipient cells. We speculate on how ex-tRNA/ex-tRFs orchestrate the effects in target cells, depending on the type of sequence and the mechanisms of uptake. We further propose that tRNA modifications may be playing important roles in ex-tRNA biology.

6.
Genes (Basel) ; 12(4)2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33921764

RESUMO

The nucleoside inosine plays an important role in purine biosynthesis, gene translation, and modulation of the fate of RNAs. The editing of adenosine to inosine is a widespread post-transcriptional modification in transfer RNAs (tRNAs) and messenger RNAs (mRNAs). At the wobble position of tRNA anticodons, inosine profoundly modifies codon recognition, while in mRNA, inosines can modify the sequence of the translated polypeptide or modulate the stability, localization, and splicing of transcripts. Inosine is also found in non-coding and exogenous RNAs, where it plays key structural and functional roles. In addition, molecular inosine is an important secondary metabolite in purine metabolism that also acts as a molecular messenger in cell signaling pathways. Here, we review the functional roles of inosine in biology and their connections to human health.


Assuntos
Códon , Doença/genética , Inosina/genética , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA de Transferência/genética , Animais , Humanos , Inosina/metabolismo , RNA Mensageiro/metabolismo , RNA de Transferência/metabolismo
7.
Trends Biotechnol ; 39(5): 460-473, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32896440

RESUMO

The genetic code is the manual that cells use to incorporate amino acids into proteins. It is possible to artificially expand this manual through cellular, molecular, and chemical manipulations to improve protein functionality. Strategies for in vivo genetic code expansion are under the same functional constraints as natural protein synthesis. Here, we review the approaches used to incorporate noncanonical amino acids (ncAAs) into designer proteins through the manipulation of the translation machinery and draw parallels between these methods and natural adaptations that improve translation in extant organisms. Following this logic, we propose new nature-inspired tactics to improve genetic code expansion (GCE) in synthetic organisms.


Assuntos
Aminoácidos , Aminoacil-tRNA Sintetases , Código Genético , Proteínas , Aminoácidos/genética , Aminoácidos/metabolismo , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Código Genético/genética , Biossíntese de Proteínas , Proteínas/química , RNA de Transferência/metabolismo , Biologia Sintética/tendências
8.
Cells ; 9(4)2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32290274

RESUMO

BRCA1 inactivation is a hallmark of familial breast cancer, often associated with aggressive triple negative breast cancers. BRCA1 is a tumor suppressor with known functions in DNA repair, transcription regulation, cell cycle control, and apoptosis. In the present study, we demonstrate that BRCA1 is also a translational regulator. We previously showed that BRCA1 was implicated in translation regulation. Here, we asked whether translational control could be a novel function of BRCA1 that contributes to its tumor suppressive activity. A combination of RNA-binding protein immunoprecipitation, microarray analysis, and polysome profiling, was used to identify the mRNAs that were specifically deregulated under BRCA1 deficiency. Western blot analysis allowed us to confirm at the protein level the deregulated translation of a subset of mRNAs. A unique and dedicated cohort of patients with documented germ-line BRCA1 pathogenic variant statues was set up, and tissue microarrays with the biopsies of these patients were constructed and analyzed by immunohistochemistry for their content in each candidate protein. Here, we show that BRCA1 translationally regulates a subset of mRNAs with which it associates. These mRNAs code for proteins involved in major programs in cancer. Accordingly, the level of these key proteins is correlated with BRCA1 status in breast cancer cell lines and in patient breast tumors. ADAT2, one of these key proteins, is proposed as a predictive biomarker of efficacy of treatments recently recommended to patients with BRCA1 deficiency. This study proposes that translational control may represent a novel molecular mechanism with potential clinical impact through which BRCA1 is a tumor suppressor.


Assuntos
Proteína BRCA1/genética , Neoplasias de Mama Triplo Negativas/genética , Adulto , Idoso , Proteína BRCA1/metabolismo , Feminino , Genes Supressores de Tumor , Humanos , Pessoa de Meia-Idade , Transfecção , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
9.
Bioinform Biol Insights ; 13: 1177932219868454, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31447549

RESUMO

Transfer RNAs (tRNAs) are key components of the translation machinery. They read codons on messenger RNAs (mRNAs) and deliver the appropriate amino acid to the ribosome for protein synthesis. The human genome encodes more than 500 tRNA genes but their individual contribution to the cellular tRNA pool is unclear. In recent years, novel methods were developed to improve the quantification of tRNA gene expression, most of which rely on next-generation sequencing such as small RNA-Seq applied to tRNAs (tRNA-Seq). In a previous study, we presented a bioinformatics strategy to analyse tRNA-Seq datasets that we named 'isodecoder-specific tRNA gene contribution profiling' (Iso-tRNA-CP). Using Iso-tRNA-CP, we showed that tRNA gene expression is cell type- and tissue-specific and that this process can regulate tRNA-derived fragments abundance. An additional observation that stems from that work is that approximately half of human tRNA genes appeared silent or poorly expressed. In this commentary, I discuss this finding in light of the current literature and speculate on potential functions that transcriptionally silent tRNA genes may play. Studying silent tRNA genes may offer a unique opportunity to unravel novel mechanisms of cell regulation associated to tRNA biology.

10.
Proc Natl Acad Sci U S A ; 116(17): 8451-8456, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30962382

RESUMO

The human genome encodes hundreds of transfer RNA (tRNA) genes but their individual contribution to the tRNA pool is not fully understood. Deep sequencing of tRNA transcripts (tRNA-Seq) can estimate tRNA abundance at single gene resolution, but tRNA structures and posttranscriptional modifications impair these analyses. Here we present a bioinformatics strategy to investigate differential tRNA gene expression and use it to compare tRNA-Seq datasets from cultured human cells and human brain. We find that sequencing caveats affect quantitation of only a subset of human tRNA genes. Unexpectedly, we detect several cases where the differences in tRNA expression among samples do not involve variations at the level of isoacceptor tRNA sets (tRNAs charged with the same amino acid but using different anticodons), but rather among tRNA genes within the same isodecoder set (tRNAs having the same anticodon sequence). Because isodecoder tRNAs are functionally equal in terms of genetic translation, their differential expression may be related to noncanonical tRNA functions. We show that several instances of differential tRNA gene expression result in changes in the abundance of tRNA-derived fragments (tRFs) but not of mature tRNAs. Examples of differentially expressed tRFs include PIWI-associated RNAs, tRFs present in tissue samples but not in cells cultured in vitro, and somatic tissue-specific tRFs. Our data support that differential expression of tRNA genes regulate noncanonical tRNA functions performed by tRFs.


Assuntos
Especificidade de Órgãos/genética , RNA de Transferência , Transcriptoma/genética , Anticódon/genética , Encéfalo/metabolismo , Células Cultivadas , Biologia Computacional , Perfilação da Expressão Gênica , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , RNA Interferente Pequeno/análise , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , RNA de Transferência/análise , RNA de Transferência/genética , RNA de Transferência/metabolismo , Análise de Sequência de RNA
11.
Biomark Med ; 13(4): 259-266, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30882233

RESUMO

AIM: To investigate the presence/absence of the Chr-11 tRNA-Lys-CUU gene as a marker for genetic predisposition to Type 2 diabetes mellitus (T2DM). METHODS: We enrolled 122 patients diagnosed with T2DM and 77 non-diabetic individuals. We evaluated clinical and biochemical parameters (body mass index, hypertension, cholesterol levels, glycosylated hemoglobin, triglycerides, etc.), and performed a genotypic profiling of Chr-11 tRNA-Lys-CUU by polymerase chain reaction analyses. RESULTS: Approximately one third of the population lacked Chr-11 tRNA-Lys-CUU. We did not observe a statistically significant association between the presence/absence of Chr-11 tRNA-Lys-CUU and T2DM. CONCLUSION: The genotypic distribution of Chr-11 tRNA-Lys-CUU in our population was consistent to that reported by others. This gene failed as a marker for T2DM predisposition.


Assuntos
Biomarcadores/análise , Cromossomos Humanos Par 11/genética , Diabetes Mellitus Tipo 2/genética , Deleção de Genes , Predisposição Genética para Doença , RNA de Transferência de Lisina/genética , Idoso , Estudos de Casos e Controles , Diabetes Mellitus Tipo 2/epidemiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Espanha/epidemiologia
12.
Mol Biol Evol ; 36(4): 650-662, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30590541

RESUMO

The modification of adenosine to inosine at the first position of transfer RNA (tRNA) anticodons (I34) is widespread among bacteria and eukaryotes. In bacteria, the modification is found in tRNAArg and is catalyzed by tRNA adenosine deaminase A, a homodimeric enzyme. In eukaryotes, I34 is introduced in up to eight different tRNAs by the heterodimeric adenosine deaminase acting on tRNA. This substrate expansion significantly influenced the evolution of eukaryotic genomes in terms of codon usage and tRNA gene composition. However, the selective advantages driving this process remain unclear. Here, we have studied the evolution of I34, tRNA adenosine deaminase A, adenosine deaminase acting on tRNA, and their relevant codons in a large set of bacterial and eukaryotic species. We show that a functional expansion of I34 to tRNAs other than tRNAArg also occurred within bacteria, in a process likely initiated by the emergence of unmodified A34-containing tRNAs. In eukaryotes, we report on a large variability in the use of I34 in protists, in contrast to a more uniform presence in fungi, plans, and animals. Our data support that the eukaryotic expansion of I34-tRNAs was driven by the improvement brought by these tRNAs to the synthesis of proteins highly enriched in certain amino acids.


Assuntos
Evolução Molecular , Inosina , RNA de Transferência/genética , Animais , Oenococcus/genética , Filogenia , Proteoma , Tetrahymena thermophila/genética
13.
RNA Biol ; 15(4-5): 500-507, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28880718

RESUMO

The modification of adenosine to inosine at position 34 of tRNA anticodons has a profound impact upon codon-anticodon recognition. In bacteria, I34 is thought to exist only in tRNAArg, while in eukaryotes the modification is present in eight different tRNAs. In eukaryotes, the widespread use of I34 strongly influenced the evolution of genomes in terms of tRNA gene abundance and codon usage. In humans, codon usage indicates that I34 modified tRNAs are preferred for the translation of highly repetitive coding sequences, suggesting that I34 is an important modification for the synthesis of proteins of highly skewed amino acid composition. Here we extend the analysis of distribution of codons that are recognized by I34 containing tRNAs to all phyla known to use this modification. We find that the preference for codons recognized by such tRNAs in genes with highly biased codon compositions is universal among eukaryotes, and we report that, unexpectedly, some bacterial phyla show a similar preference. We demonstrate that the genomes of these bacterial species contain previously undescribed tRNA genes that are potential substrates for deamination at position 34.


Assuntos
Códon/química , Cianobactérias/genética , Eucariotos/genética , Firmicutes/genética , Código Genético , Inosina/metabolismo , RNA de Transferência de Arginina/genética , Adenosina/genética , Adenosina/metabolismo , Aminoácidos/genética , Aminoácidos/metabolismo , Anticódon/química , Anticódon/metabolismo , Evolução Biológica , Códon/metabolismo , Cianobactérias/metabolismo , Eucariotos/metabolismo , Firmicutes/metabolismo , Humanos , Inosina/genética , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Transferência de Arginina/metabolismo , Transcriptoma
14.
Life (Basel) ; 7(2)2017 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-28379164

RESUMO

The frozen accident theory of the Genetic Code was a proposal by Francis Crick that attempted to explain the universal nature of the Genetic Code and the fact that it only contains information for twenty amino acids. Fifty years later, it is clear that variations to the universal Genetic Code exist in nature and that translation is not limited to twenty amino acids. However, given the astonishing diversity of life on earth, and the extended evolutionary time that has taken place since the emergence of the extant Genetic Code, the idea that the translation apparatus is for the most part immobile remains true. Here, we will offer a potential explanation to the reason why the code has remained mostly stable for over three billion years, and discuss some of the mechanisms that allow species to overcome the intrinsic functional limitations of the protein synthesis machinery.

15.
Sci Adv ; 2(4): e1501860, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27386510

RESUMO

Understanding the principles that led to the current complexity of the genetic code is a central question in evolution. Expansion of the genetic code required the selection of new transfer RNAs (tRNAs) with specific recognition signals that allowed them to be matured, modified, aminoacylated, and processed by the ribosome without compromising the fidelity or efficiency of protein synthesis. We show that saturation of recognition signals blocks the emergence of new tRNA identities and that the rate of nucleotide substitutions in tRNAs is higher in species with fewer tRNA genes. We propose that the growth of the genetic code stalled because a limit was reached in the number of identity elements that can be effectively used in the tRNA structure.


Assuntos
Evolução Molecular , Código Genético , RNA de Transferência/genética , Conformação de Ácido Nucleico
16.
Genome Biol ; 16: 216, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26429597

RESUMO

A mutation in the WDR4 gene, coding for a tRNA-modifying enzyme, leads to reduced levels of guanosine methylation in tRNA in patients with primordial dwarfism.


Assuntos
Nanismo Hipofisário/genética , Processamento Pós-Transcricional do RNA/genética , RNA de Transferência/genética , Nanismo Hipofisário/patologia , Humanos , Metilação , Mutação , RNA de Transferência/metabolismo , Saccharomyces cerevisiae
17.
Nucleic Acids Res ; 43(10): 5145-57, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25916855

RESUMO

Transfer RNAs (tRNAs) are key adaptor molecules of the genetic code that are heavily modified post-transcriptionally. Inosine at the first residue of the anticodon (position 34; I34) is an essential widespread tRNA modification that has been poorly studied thus far. The modification in eukaryotes results from a deamination reaction of adenine that is catalyzed by the heterodimeric enzyme adenosine deaminase acting on tRNA (hetADAT), composed of two subunits: ADAT2 and ADAT3. Using high-throughput small RNA sequencing (RNAseq), we show that this modification is incorporated to human tRNAs at the precursor tRNA level and during maturation. We also functionally validated the human genes encoding for hetADAT and show that the subunits of this enzyme co-localize in nucleus in an ADAT2-dependent manner. Finally, by knocking down HsADAT2, we demonstrate that variations in the cellular levels of hetADAT will result in changes in the levels of I34 modification in all its potential substrates. Altogether, we present RNAseq as a powerful tool to study post-transcriptional tRNA modifications at the precursor tRNA level and give the first insights on the biology of I34 tRNA modification in metazoans.


Assuntos
Inosina/metabolismo , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , RNA de Transferência/metabolismo , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Núcleo Celular/enzimologia , Núcleo Celular/genética , Células HEK293 , Humanos , Precursores de RNA/química , RNA de Transferência/química , Análise de Sequência de RNA
18.
FEBS Lett ; 588(23): 4279-86, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25263703

RESUMO

Inosine on transfer RNAs (tRNAs) are post-transcriptionally formed by a deamination mechanism of adenosines at positions 34, 37 and 57 of certain tRNAs. Despite its ubiquitous nature, the biological role of inosine in tRNAs remains poorly understood. Recent developments in the study of nucleotide modifications are beginning to indicate that the dynamics of such modifications are used in the control of specific genetic programs. Likewise, the essentiality of inosine-modified tRNAs in genome evolution and animal biology is becoming apparent. Here we review our current understanding on the role of inosine in tRNAs, the enzymes that catalyze the modification and the evolutionary link between such enzymes and other deaminases.


Assuntos
Adenosina/metabolismo , Evolução Molecular , Inosina/metabolismo , Edição de RNA , RNA de Transferência/metabolismo , Adenosina Desaminase/metabolismo , Animais , Humanos , RNA de Transferência/química
19.
Trends Mol Med ; 20(6): 306-14, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24581449

RESUMO

Transfer RNAs (tRNAs) are key for efficient and accurate protein translation. To be fully active, tRNAs need to be heavily modified post-transcriptionally. Growing evidence indicates that tRNA modifications and the enzymes catalyzing such modifications may play important roles in complex human pathologies. Here, we have compiled current knowledge that directly link tRNA modifications to human diseases such as cancer, type 2 diabetes (T2D), neurological disorders, and mitochondrial-linked disorders. The molecular mechanisms behind these connections remain, for the most part, unknown. As we progress towards the understanding of the roles played by hypomodified tRNAs in human disease, novel areas of therapeutic intervention may be discovered.


Assuntos
Diabetes Mellitus Tipo 2/genética , Neoplasias/genética , Doenças do Sistema Nervoso/genética , RNA de Transferência/química , RNA de Transferência/fisiologia , Humanos , Doenças Mitocondriais/genética , Terapia de Alvo Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA