Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Evol ; 8(23): 11385-11398, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30598743

RESUMO

Host-parasite associations facilitate the action of reciprocal selection and can drive rapid evolutionary change. When multiple host species are available to a single parasite, parallel specialization on different hosts may promote the action of diversifying natural selection and divergence via host race formation. Here, we examine a population of the kidnapper ant (Polyergus mexicanus) that is an obligate social parasite of three sympatric ant species: Formica accreta, F. argentea, and F. subaenescens (formerly F. fusca). Behavioral and ecological observations of P. mexicanus have shown that individual colonies parasitize only one species of host and that new Polyergus queens maintain host fidelity when establishing new colonies. To successfully adapt to a particular host, Polyergus ants may mimic or camouflage themselves with the species-specific chemical cues (cuticular hydrocarbons) that their hosts use to ascertain colony membership. To investigate the extent of host specialization, we collected both genetic and chemical data from P. mexicanus that parasitize each of the three different Formica species in sympatry. We show that host-associated genetic structure exists for both maternally inherited mitochondrial DNA data and biparentally inherited microsatellite markers. We also show that P. mexicanus can be distinguished by chemical profile according to host due to partial matching with their host. Our results support the hypothesis that host race formation is occurring among lineages of P. mexicanus that use different Formica hosts. Thus, this system may represent a promising model for illuminating the early steps of divergence, accumulation of reproductive isolation, and speciation.

2.
PLoS One ; 11(2): e0147498, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26840394

RESUMO

Highly social ants, bees and wasps employ sophisticated recognition systems to identify colony members and deny foreign individuals access to their nest. For ants, cuticular hydrocarbons serve as the labels used to ascertain nest membership. Social parasites, however, are capable of breaking the recognition code so that they can thrive unopposed within the colonies of their hosts. Here we examine the influence of the socially parasitic slave-making ant, Polyergus breviceps on the nestmate recognition system of its slaves, Formica altipetens. We compared the chemical, genetic, and behavioral characteristics of colonies of enslaved and free-living F. altipetens. We found that enslaved Formica colonies were more genetically and chemically diverse than their free-living counterparts. These differences are likely caused by the hallmark of slave-making ant ecology: seasonal raids in which pupa are stolen from several adjacent host colonies. The different social environments of enslaved and free-living Formica appear to affect their recognition behaviors: enslaved Formica workers were less aggressive towards non-nestmates than were free-living Formica. Our findings indicate that parasitism by P. breviceps dramatically alters both the chemical and genetic context in which their kidnapped hosts develop, leading to changes in how they recognize nestmates.


Assuntos
Formigas , Comportamento Animal , Comportamento Social , Alelos , Animais , Formigas/genética , Variação Genética , Repetições de Microssatélites
3.
Proc Natl Acad Sci U S A ; 108(14): 5673-8, 2011 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-21282631

RESUMO

Ants are some of the most abundant and familiar animals on Earth, and they play vital roles in most terrestrial ecosystems. Although all ants are eusocial, and display a variety of complex and fascinating behaviors, few genomic resources exist for them. Here, we report the draft genome sequence of a particularly widespread and well-studied species, the invasive Argentine ant (Linepithema humile), which was accomplished using a combination of 454 (Roche) and Illumina sequencing and community-based funding rather than federal grant support. Manual annotation of >1,000 genes from a variety of different gene families and functional classes reveals unique features of the Argentine ant's biology, as well as similarities to Apis mellifera and Nasonia vitripennis. Distinctive features of the Argentine ant genome include remarkable expansions of gustatory (116 genes) and odorant receptors (367 genes), an abundance of cytochrome P450 genes (>110), lineage-specific expansions of yellow/major royal jelly proteins and desaturases, and complete CpG DNA methylation and RNAi toolkits. The Argentine ant genome contains fewer immune genes than Drosophila and Tribolium, which may reflect the prominent role played by behavioral and chemical suppression of pathogens. Analysis of the ratio of observed to expected CpG nucleotides for genes in the reproductive development and apoptosis pathways suggests higher levels of methylation than in the genome overall. The resources provided by this genome sequence will offer an abundance of tools for researchers seeking to illuminate the fascinating biology of this emerging model organism.


Assuntos
Formigas/genética , Genoma de Inseto/genética , Genômica/métodos , Filogenia , Animais , Formigas/fisiologia , Sequência de Bases , California , Metilação de DNA , Biblioteca Gênica , Genética Populacional , Hierarquia Social , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único/genética , Receptores Odorantes/genética , Análise de Sequência de DNA
4.
Proc Natl Acad Sci U S A ; 108(14): 5667-72, 2011 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-21282651

RESUMO

We report the draft genome sequence of the red harvester ant, Pogonomyrmex barbatus. The genome was sequenced using 454 pyrosequencing, and the current assembly and annotation were completed in less than 1 y. Analyses of conserved gene groups (more than 1,200 manually annotated genes to date) suggest a high-quality assembly and annotation comparable to recently sequenced insect genomes using Sanger sequencing. The red harvester ant is a model for studying reproductive division of labor, phenotypic plasticity, and sociogenomics. Although the genome of P. barbatus is similar to other sequenced hymenopterans (Apis mellifera and Nasonia vitripennis) in GC content and compositional organization, and possesses a complete CpG methylation toolkit, its predicted genomic CpG content differs markedly from the other hymenopterans. Gene networks involved in generating key differences between the queen and worker castes (e.g., wings and ovaries) show signatures of increased methylation and suggest that ants and bees may have independently co-opted the same gene regulatory mechanisms for reproductive division of labor. Gene family expansions (e.g., 344 functional odorant receptors) and pseudogene accumulation in chemoreception and P450 genes compared with A. mellifera and N. vitripennis are consistent with major life-history changes during the adaptive radiation of Pogonomyrmex spp., perhaps in parallel with the development of the North American deserts.


Assuntos
Formigas/genética , Redes Reguladoras de Genes/genética , Genoma de Inseto/genética , Genômica/métodos , Filogenia , Animais , Formigas/fisiologia , Sequência de Bases , Clima Desértico , Hierarquia Social , Dados de Sequência Molecular , América do Norte , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Receptores Odorantes/genética , Análise de Sequência de DNA
5.
Evol Appl ; 3(2): 136-43, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25567914

RESUMO

Ants are among the most damaging invasive species, and their success frequently arises from the widespread cooperation displayed by introduced populations, often across hundreds of kilometers. Previous studies of the invasive Argentine ant (Linepithema humile) have shown that introduced populations on different continents each contain a single, vast supercolony and, occasionally, smaller secondary colonies. Here, we perform inter-continental behavioral analyses among supercolonies in North America, Europe, Asia, Hawaii, New Zealand and Australia and show that these far-flung supercolonies also recognize and accept each other as if members of a single, globally distributed supercolony. Furthermore, populations also possess similar genetic and chemical profiles. However, these ants do show aggression toward ants from South Africa and the smaller secondary colonies that occur in Hawaii and California. Thus, the largest and most dominant introduced populations are likely descended from the same ancestral colony and, despite having been established more than 100 years ago, have diverged very little. This apparent evolutionary stasis is surprising because, in other species, some of the most rapid rates of evolutionary change have occurred in introduced populations. Given the spatial extent of the Argentine ant society we report here, there can be little doubt that this intercontinental supercolony represents the most populous known animal society.

6.
J Biogeogr ; 35(11): 2102-2118, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19536341

RESUMO

AIM: Kangaroo mice, genus Microdipodops Merriam, are endemic to the Great Basin and include two species: M. pallidus Merriam and M. megacephalus Merriam. The pallid kangaroo mouse, M. pallidus, is a sand-obligate desert rodent. Our principal intent is to identify its current geographical distribution and to formulate a phylogeographical hypothesis for this taxon. In addition, we test for orientation patterns in haplotype sharing for evidence of past episodes of movement and gene flow. LOCATION: The Great Basin Desert region of western North America, especially the sandy habitats of the Lahontan Trough and those in south-central Nevada. METHODS: Mitochondrial DNA sequence data from portions of three genes (16S ribosomal RNA, cytochrome b, and transfer RNA for glutamic acid) were obtained from 98 individuals of M. pallidus representing 27 general localities sampled throughout its geographical range. Molecular sequence data were analysed using neighbour-joining, maximum-parsimony, maximum-likelihood and Bayesian methods of phylogenetic inference. Directional analysis of phylogeographical patterns, a novel method, was used to examine angular measurements of haplotype sharing between pairs of localities to detect and quantify historical events pertaining to movement patterns and gene flow. RESULTS: Collecting activities showed that M. pallidus is a rather rare rodent (mean trapping success was 2.88%), and its distribution has changed little from that determined three-quarters of a century ago. Two principal phylogroups, distributed as eastern and western moieties, are evident from the phylogenetic analyses (mean sequence divergence for cytochrome b is c. 8%). The western clade shows little phylogenetic structure and seems to represent a large polytomy. In the eastern clade, however, three subgroups are recognized. Nine of the 42 unique composite haplotypes are present at two or more localities and are used for the orientation analyses. Axial data from haplotype sharing between pairwise localities show significant, non-random angular patterns: a north-west to south-east orientation in the western clade, and a north-east to south-west directional pattern in the eastern clade. MAIN CONCLUSIONS: The geographical range of M. pallidus seems to be remarkably stable in historical times and does not show a northward (or elevationally upward) movement trend, as has been reported for some other kinds of organism in response to global climate change. The eastern and western clades are likely to represent morphologically cryptic species. Estimated times of divergence of the principal clades of M. pallidus (4.38 Ma) and between M. pallidus and M. megacephalus (8.1 Ma; data from a related study) indicate that kangaroo mice diverged much earlier than thought previously. The phylogeographical patterns described here may serve as a model for other sand-obligate members of the Great Basin Desert biota.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA