Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nat Neurosci ; 25(4): 458-473, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35379995

RESUMO

Hydrocephalus, characterized by cerebral ventricular dilatation, is routinely attributed to primary defects in cerebrospinal fluid (CSF) homeostasis. This fosters CSF shunting as the leading reason for brain surgery in children despite considerable disease heterogeneity. In this study, by integrating human brain transcriptomics with whole-exome sequencing of 483 patients with congenital hydrocephalus (CH), we found convergence of CH risk genes in embryonic neuroepithelial stem cells. Of all CH risk genes, TRIM71/lin-41 harbors the most de novo mutations and is most specifically expressed in neuroepithelial cells. Mice harboring neuroepithelial cell-specific Trim71 deletion or CH-specific Trim71 mutation exhibit prenatal hydrocephalus. CH mutations disrupt TRIM71 binding to its RNA targets, causing premature neuroepithelial cell differentiation and reduced neurogenesis. Cortical hypoplasia leads to a hypercompliant cortex and secondary ventricular enlargement without primary defects in CSF circulation. These data highlight the importance of precisely regulated neuroepithelial cell fate for normal brain-CSF biomechanics and support a clinically relevant neuroprogenitor-based paradigm of CH.


Assuntos
Hidrocefalia , Animais , Fenômenos Biomecânicos , Encéfalo/metabolismo , Líquido Cefalorraquidiano/metabolismo , Humanos , Hidrocefalia/líquido cefalorraquidiano , Hidrocefalia/genética , Camundongos , Neurogênese/genética , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/genética , Sequenciamento do Exoma
2.
Front Bioeng Biotechnol ; 9: 674384, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34195179

RESUMO

Three-dimensional (3D) culture bridges and minimizes the gap between in vitro and in vivo states of cells and various 3D culture systems have been developed according to different approaches. However, most of these approaches are either complicated to operate, or costive to scale up. Therefore, a simple method for stem cell spheroid formation and preservation was proposed using poly(D,L-lactic acid) porous thin film (porous nanosheet), which were fabricated by a roll-to-roll gravure coating method combining a solvent etching process. The obtained porous nanosheet was less than 200 nm in thickness and had an average pore area of 6.6 µm2 with a porosity of 0.887. It offered a semi-adhesive surface for stem cells to form spheroids and maintained the average spheroid diameter below 100 µm for 5 days. In comparison to the spheroids formed in suspension culture, the porous nanosheets improved cell viability and cell division rate, suggesting the better feasibility to be applied as 3D culture scaffolds.

3.
Front Cell Dev Biol ; 9: 658966, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34055789

RESUMO

Mutations affecting the germline can result in infertility or the generation of germ cell tumors (GCT), highlighting the need to identify and characterize the genes controlling germ cell development. The RNA-binding protein and E3 ubiquitin ligase TRIM71 is essential for embryogenesis, and its expression has been reported in GCT and adult mouse testes. To investigate the role of TRIM71 in mammalian germ cell embryonic development, we generated a germline-specific conditional Trim71 knockout mouse (cKO) using the early primordial germ cell (PGC) marker Nanos3 as a Cre-recombinase driver. cKO mice are infertile, with male mice displaying a Sertoli cell-only (SCO) phenotype which in humans is defined as a specific subtype of non-obstructive azoospermia characterized by the absence of germ cells in the seminiferous tubules. Infertility in male Trim71 cKO mice originates during embryogenesis, as the SCO phenotype was already apparent in neonatal mice. The in vitro differentiation of mouse embryonic stem cells (ESCs) into PGC-like cells (PGCLCs) revealed reduced numbers of PGCLCs in Trim71-deficient cells. Furthermore, TCam-2 cells, a human GCT-derived seminoma cell line which was used as an in vitro model for PGCs, showed proliferation defects upon TRIM71 knockdown. Additionally, in vitro growth competition assays, as well as proliferation assays with wild type and CRISPR/Cas9-generated TRIM71 mutant NCCIT cells showed that TRIM71 also promotes proliferation in this malignant GCT-derived non-seminoma cell line. Importantly, the PGC-specific markers BLIMP1 and NANOS3 were consistently downregulated in Trim71 KO PGCLCs, TRIM71 knockdown TCam-2 cells and TRIM71 mutant NCCIT cells. These data collectively support a role for TRIM71 in PGC development. Last, via exome sequencing analysis, we identified several TRIM71 variants in a cohort of infertile men, including a loss-of-function variant in a patient with an SCO phenotype. Altogether, our work reveals for the first time an association of TRIM71 deficiency with human male infertility, and uncovers further developmental roles for TRIM71 in the germline during mouse embryogenesis.

4.
RNA ; 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-33975917

RESUMO

The stem cell-specific RNA-binding protein TRIM71/LIN-41 was the first identified target of the pro-differentiation and tumor suppressor miRNA let-7. TRIM71 has essential functions in embryonic development and a proposed oncogenic role in several cancer types, such as hepatocellular carcinoma. Here, we show that TRIM71 regulates let-7 expression and activity via two independent mechanisms. On the one hand, TRIM71 enhances pre-let-7 degradation through its direct interaction with LIN28 and TUT4, thereby inhibiting let-7 maturation and indirectly promoting the stabilization of let-7 targets. On the other hand, TRIM71 represses the activity of mature let-7 via its RNA-dependent interaction with the RNA-Induced Silencing Complex (RISC) effector protein AGO2. We found that TRIM71 directly binds and stabilizes let-7 targets, suggesting that let-7 activity inhibition occurs on active RISCs. MiRNA enrichment analysis of several transcriptomic datasets from mouse embryonic stem cells and human hepatocellular carcinoma cells suggests that these let-7 regulatory mechanisms shape transcriptomic changes during developmental and oncogenic processes. Altogether, our work reveals a novel role for TRIM71 as a miRNA repressor and sheds light on a dual mechanism of let-7 regulation.

5.
Nucleic Acids Res ; 47(22): 11861-11879, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31732746

RESUMO

Nonsense-mediated decay (NMD) plays a fundamental role in the degradation of premature termination codon (PTC)-containing transcripts, but also regulates the expression of functional transcripts lacking PTCs, although such 'non-canonical' functions remain ill-defined and require the identification of factors targeting specific mRNAs to the NMD machinery. Our work identifies the stem cell-specific mRNA repressor protein TRIM71 as one of these factors. TRIM71 plays an essential role in embryonic development and is linked to carcinogenesis. For instance, TRIM71 has been correlated with advanced stages and poor prognosis in hepatocellular carcinoma. Our data shows that TRIM71 represses the mRNA of the cell cycle inhibitor and tumor suppressor CDKN1A/p21 and promotes the proliferation of HepG2 tumor cells. CDKN1A specific recognition involves the direct interaction of TRIM71 NHL domain with a structural RNA stem-loop motif within the CDKN1A 3'UTR. Importantly, CDKN1A repression occurs independently of miRNA-mediated silencing. Instead, the NMD factors SMG1, UPF1 and SMG7 assist TRIM71-mediated degradation of CDKN1A mRNA, among other targets. Our data sheds light on TRIM71-mediated target recognition and repression mechanisms and uncovers a role for this stem cell-specific factor and oncogene in non-canonical NMD, revealing the existence of a novel mRNA surveillance mechanism which we have termed the TRIM71/NMD axis.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/genética , Degradação do RNAm Mediada por Códon sem Sentido/fisiologia , Estabilidade de RNA , Proteínas com Motivo Tripartido/fisiologia , Ubiquitina-Proteína Ligases/fisiologia , Regiões 3' não Traduzidas , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Células HEK293 , Células Hep G2 , Humanos , Ligação Proteica , Estabilidade de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Repressoras/fisiologia , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/genética
6.
Mol Oncol ; 9(4): 889-905, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25637283

RESUMO

We utilized three tiers of screening to identify novel therapeutic agents for pancreatic cancers. First, we analyzed 14 pancreatic cancer cell lines against a panel of 66 small-molecule kinase inhibitors and dasatinib was the most potent. Second, we performed RNA expression analysis on 3 dasatinib-resistant and 3 dasatinib-sensitive pancreatic cancer cell lines to profile their gene expression. Third, gene profiling data was integrated with the Connectivity Map database to search for potential drugs. Thioridazine was one of the top ranking small molecules with highly negative enrichment. Thioridazine and its family members of phenothiazine including penfluridol caused pancreatic cancer cell death and affected protein expression levels of molecules involved in cell cycle regulation, apoptosis, and multiple kinase activities. This family of drugs causes activation of protein phosphatase 2 (PP2A). The drug FTY-720 (activator of PP2A) induced apoptosis of pancreatic cancer cells. Silencing catalytic unit of PP2A rendered pancreatic cancer cells resistant to penfluridol. Our observations suggest potential therapeutic use of penfluridol or similar agent associated with activation of PP2A in pancreatic cancers.


Assuntos
Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/enzimologia , Proteína Fosfatase 2/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Simulação por Computador , Dasatinibe/farmacologia , Avaliação Pré-Clínica de Medicamentos , Ativação Enzimática/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Neoplasias Pancreáticas/genética , Penfluridol/farmacologia , Penfluridol/uso terapêutico , Fenotiazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia
7.
Oncotarget ; 5(13): 4881-94, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24952679

RESUMO

Endoplasmic reticulum stress from unfolded proteins is associated with the proliferation of pancreatic tumor cells, making the many regulatory molecules of this pathway appealing targets for therapy. The objective of our study was to assess potential therapeutic efficacy of inhibitors of unfolded protein response (UPR) in pancreatic cancers focusing on IRE1α inhibitors. IRE1α-mediated XBP-1 mRNA splicing encodes a transcription factor that enhances transcription of chaperone proteins in order to reverse UPR. Proliferation assays using a panel of 14 pancreatic cancer cell lines showed a dose- and time-dependent growth inhibition by IRE1α-specific inhibitors (STF-083010, 2-Hydroxy-1-naphthaldehyde, 3-Ethoxy-5,6-dibromosalicylaldehyde, toyocamycin). Growth inhibition was also noted using a clonogenic growth assay in soft agar, as well as a xenograft in vivo model of pancreatic cancer. Cell cycle analysis showed that these IRE1α inhibitors caused growth arrest at either the G1 or G2/M phases (SU8686, MiaPaCa2) and induced apoptosis (Panc0327, Panc0403). Western blot analysis showed cleavage of caspase 3 and PARP, and prominent induction of the apoptotic molecule BIM. In addition, synergistic effects were found between either STF-083010, 2-Hydroxy-1-naphthaldehyde, 3-Ethoxy-5,6-dibromosalicylaldehyde, or toyocamycin and either gemcitabine or bortezomib. Our data suggest that use of an IRE1α inhibitor is a novel therapeutic approach for treatment of pancreatic cancers.


Assuntos
Apoptose/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Animais , Western Blotting , Ácidos Borônicos/farmacologia , Bortezomib , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Sinergismo Farmacológico , Endorribonucleases/antagonistas & inibidores , Endorribonucleases/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos Endogâmicos NOD , Camundongos SCID , Naftalenos/farmacologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Pirazinas/farmacologia , Interferência de RNA , Splicing de RNA/efeitos dos fármacos , Fatores de Transcrição de Fator Regulador X , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sulfonamidas/farmacologia , Tiofenos/farmacologia , Toiocamicina/farmacologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Resposta a Proteínas não Dobradas/genética , Proteína 1 de Ligação a X-Box , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA