RESUMO
In this study, we aimed to quantify the presence of microplastics (MPs) in the stomachs of large pelagic fish (swordfish, Xiphias gladius, Linnaeus, 1758) sampled in the western Mediterranean Sea, and assess temporal trends (2011-2012 vs. 2017-2019) in MP ingestion. MPs were extracted from stomachs and characterized by µ-Fourier transform infrared spectroscopy. Results highlighted the ingestion of MP in 39 out of 49 stomachs analysed. Ingested MPs consisted mostly of small (<1 mm) fibers (88.6 %, mean ± standard deviation = 2.5 ± 6.1 particles per stomach), with a greater frequency of occurrence (FO) in the second period (FO = 90 %, 3.3 ± 8.0 particles per stomach). The predominant colours were purple, black and blue, and polyethylene terephthalate was the most frequently detected polymer. These results are crucial for the development of management actions aimed at the conservation of swordfish in the Mediterranean Sea and the prevention of health risks to humans.
Assuntos
Monitoramento Ambiental , Microplásticos , Estômago , Poluentes Químicos da Água , Mar Mediterrâneo , Animais , Microplásticos/análise , Poluentes Químicos da Água/análise , Estômago/química , Perciformes , PeixesRESUMO
A fully 3D unsteady Computational Fluid Dynamics (CFD) approach coupled with heterogeneous reaction chemistry is presented in order to study the behavior of a single square channel as part of a Lean [Formula: see text] Traps. The reliability of the numerical tool has been validated against literature data considering only active BaO site. Even though the input/output performance of such catalyst has been well known, here the spatial distribution within a single channel is investigated in details. The square channel geometry influences the flow field and the catalyst performance being the flow velocity distribution on the cross section non homogeneous. The mutual interaction between the flow and the active catalyst walls influences the spatial distribution of the volumetric species. Low velocity regions near the square corners and transversal secondary flows are shown in several cross-sections along the streamwise direction at different instants. The results shed light on the three-dimensional characteristic of both the flow field and species distribution within a single square channel of the catalyst with respect to 0-1D approaches.