Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 6: 19792, 2016 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-26806528

RESUMO

More than two billion people are micronutrient deficient. Polished grains of popular rice varieties have concentration of approximately 2 µg g(-1) iron (Fe) and 16 µg g(-1) zinc (Zn). The HarvestPlus breeding programs for biofortified rice target 13 µg g(-1) Fe and 28 µg g(-1) Zn to reach approximately 30% of the estimated average requirement (EAR). Reports on engineering Fe content in rice have shown an increase up to 18 µg g(-1) in glasshouse settings; in contrast, under field conditions, 4 µg g(-1) was the highest reported concentration. Here, we report on selected transgenic events, field evaluated in two countries, showing 15 µg g(-1) Fe and 45.7 µg g(-1) Zn in polished grain. Rigorous selection was applied to 1,689 IR64 transgenic events for insert cleanliness and, trait and agronomic performances. Event NASFer-274 containing rice nicotianamine synthase (OsNAS2) and soybean ferritin (SferH-1) genes showed a single locus insertion without a yield penalty or altered grain quality. Endosperm Fe and Zn enrichment was visualized by X-ray fluorescence imaging. The Caco-2 cell assay indicated that Fe is bioavailable. No harmful heavy metals were detected in the grain. The trait remained stable in different genotype backgrounds.


Assuntos
Alimentos Fortificados , Ferro , Micronutrientes , Oryza/química , Zinco , Colômbia , Grão Comestível/química , Endosperma/química , Expressão Gênica , Genótipo , Metais Pesados/química , Oryza/genética , Filipinas , Plantas Geneticamente Modificadas , Característica Quantitativa Herdável , Sementes , Transgenes
2.
Mol Breed ; 33: 23-37, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24482599

RESUMO

Biofortification of rice (Oryza sativa L.) using a transgenic approach to increase the amount of iron in the grain is proposed as a low-cost, reliable, and sustainable solution to help developing countries combat anemia. In this study, we generated and evaluated a large number of rice or soybean ferritin over-accumulators in rice mega-variety IR64, including marker-free events, by introducing soybean or rice ferritin genes into the endosperm for product development. Accumulation of the protein was confirmed by ELISA, in situ immunological detection, and Western blotting. As much as a 37- and 19-fold increase in the expression of ferritin gene in single and co-transformed plants, respectively, and a 3.4-fold increase in Fe content in the grain over the IR64 wild type was achieved using this approach. Agronomic characteristics of a total of 1,860 progenies from 58 IR64 single independent transgenic events and 768 progenies from 27 marker-free transgenic events were evaluated and most trait characteristics did not show a penalty. Grain quality evaluation of high-Fe IR64 transgenic events showed quality similar to that of the wild-type IR64. To understand the effect of transgenes on iron homeostasis, transcript analysis was conducted on a subset of genes involved in iron uptake and loading. Gene expression of the exogenous ferritin gene in grain correlates with protein accumulation and iron concentration. The expression of NAS2 and NAS3 metal transporters increased during the grain milky stage.

3.
Methods Mol Biol ; 1099: 261-71, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24243210

RESUMO

Agrobacterium is a common soil bacterium with natural capacity for trans-kingdom transfer of genetic information by transferring its T-DNA into the eukaryotic genome. In agricultural plant biotechnology, combination of non-phytopathogenic strain of Agrobacterium tumefaciens with modified T-DNA and vir-genes in a binary vector system is the most widely utilized system for genetic improvement in diverse plant species and for gene function validation. Here we have described a highly efficient A. tumefaciens-mediated transformation system for indica and japonica rice cultivars based on an immature embryo system.


Assuntos
Agrobacterium/genética , Técnicas de Transferência de Genes , Oryza/genética , Transformação Genética , Agrobacterium/metabolismo , Oryza/microbiologia , Plantas Geneticamente Modificadas , Sementes/genética , Sementes/microbiologia
4.
Physiol Plant ; 120(1): 132-139, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15032885

RESUMO

Phytohormones are well-known regulators of the symbiotic Rhizobium-legume association in the plant host. The enod40 nodulin gene is associated with the earliest phases of the nodule organogenesis programme in the legume host and modifying its expression resulted in perturbations of nodule development in Medicago truncatula. Therefore in our pursuit to mimic the initial signal transduction steps of legume nodulation in the alien physiological set-up of a rice plant, we have expressed the Mtenod40 gene in rice. Molecular data confirm the stable integration, inheritance and transcription of the foreign gene in this non-legume. We have compared the phytohormonal responses of Mtenod40-overexpressing and control plants in a homologous legume background (M. truncatula) and in the non-legume rice. An enod40-mediated root growth response, induced by inhibition of ethylene biosynthesis, was observed in both plants. On the other hand, a significant differential effect of cytokinins was observed only in rice plants. This suggests that ethylene inhibits enod40 action both in legumes and non-legumes and reinforces that some of the early signal transduction steps of the nodule developmental programme may function in rice.

5.
Plant Biotechnol J ; 1(2): 81-90, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17147745

RESUMO

Vitamin-A deficiency (VAD) is a major malnutrition problem in South Asia, where indica rice is the staple food. Indica-type rice varieties feed more than 2 billion people. Hence, we introduced a combination of transgenes using the biolistic system of transformation enabling biosynthesis of provitamin A in the endosperm of several indica rice cultivars adapted to diverse ecosystems of different countries. The rice seed-specific glutelin promoter (Gt-1 P) was used to drive the expression of phytoene synthase (psy), while lycopene beta-cyclase (lcy) and phytoene desaturase (crtI), fused to the transit peptide sequence of the pea-Rubisco small subunit, were driven by the constitutive cauliflower mosaic virus promoter (CaMV35S P). Transgenic plants were recovered through selection with either CaMV35S P driven hph (hygromycin phosphotransferase) gene or cestrum yellow leaf curling virus promoter (CMP) driven pmi (phophomannose isomerase) gene. Molecular and biochemical analyses demonstrated stable integration and expression of the transgenes. The yellow colour of the polished rice grain evidenced the carotenoid accumulation in the endosperm. The colour intensity correlated with the estimated carotenoid content by spectrophotometric and HPLC analysis. Carotenoid level in cooked polished seeds was comparable (with minor loss of xanthophylls) to that in non-cooked seeds of the same transgenic line. The variable segregation pattern in T1 selfing generation indicated single to multiple loci insertion of the transgenes in the genome. This is the first report of using nonantibiotic pmi driven by a novel promoter in generating transgenic indica rice for possible future use in human nutrition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA