Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemphyschem ; 25(16): e202400378, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-38726548

RESUMO

Hybrid DFT calculations are employed to compare the adsorption and stabilization of Cu, Ag, and Au atoms on graphitic C3N4 and on the heterojunction formed by g- C3N4 and TiO2. While Cu and Ag can be strongly chemisorbed in form of cations on g- C3N4, Au is only weakly physisorbed. On g- C3N4/TiO2, all coinage metal adatoms can be strongly chemisorbed, but, while Cu and Ag forms cations, Au form an Au- species. Ab Initio Molecular Dynamics simulations confirm that the metal adatoms on g-C3N4 are highly mobile at room temperature, while they remain confined in the interfacial spacing between C3N4 and TiO2 on the heterojunction, being both stably bound and reachable for the reactants in a catalytic cycle. Doping g- C3N4/TiO2 with metal single atoms permits thus to generate catalytic systems with tunable charge and chemical properties and improved stability with respect to bare C3N4. Moreover, the changes in the electronic structure of g- C3N4/TiO2 induced by the presence of the metal single atoms are beneficial also for photocatalytic applications.

2.
Chemphyschem ; 24(5): e202200791, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36399544

RESUMO

We investigate the interface between carbon nitride (C3 N4 ) and phosphorene nanosheets (P-ene) by means of Density Functional Theory (DFT) calculations. C3 N4 /P-ene composites have been recently obtained experimentally showing excellent photoactivity. Our results indicate that the formation of the interface is a favorable process driven by Van der Waals forces. The thickness of P-ene nanosheets determines the band edges offsets and the charge carriers' separation. The system is predicted to pass from a nearly type-II to a type-I junction when the thickness of P-ene increases, and the conduction band offset is particularly sensitive. Last, we apply the Transfer Matrix Method to estimate the efficiency for charge carriers' migration as a function of the P-ene thickness.

3.
Nanoscale Adv ; 4(21): 4517-4525, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36341303

RESUMO

We report the presence of sub-nm MoO x clusters formed on basal planes of the 2H MoS2 crystals during thermal oxidative etching in air at a temperature of 370 °C. Using high resolution non-contact atomic force microscopy (AFM) we provide a histogram of their preferred heights. The AFM results combined with density functional theory (DFT) simulations show remarkably well that the MoO x clusters are predominantly single MoO3 molecules and their dimers at the sulfur vacancies. Additional Raman spectroscopy, and energy and wavelength dispersive X-ray spectroscopies as well as Kelvin probe AFM investigations confirmed the presence of the MoO3/MoO x species covering the MoS2 surface only sparsely. The X-ray absorption near edge spectroscopy data confirm the MoO3 stoichiometry. Taken together, our results show that oxidative etching and removal of Mo atoms at the atomic level follow predominantly via formation of single MoO3 molecules. Such findings confirm the previously only proposed oxidative etching stoichiometry.

4.
J Am Chem Soc ; 144(36): 16267-16271, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36049156

RESUMO

Tuning the properties of oxide surfaces through the adsorption of designed ligands is highly desirable for several applications, such as catalysis. N-Heterocyclic carbenes (NHCs) have been successfully employed as ligands for the modification of metallic surfaces. On the other hand, their potential as modifiers of ubiquitous oxide surfaces still needs to be developed. Here we show that a model NHC binds covalently to a copper oxide surface under UHV conditions. In particular, we report the first example of a covalent bond between NHCs and oxygen atoms from the oxide layer. This study demonstrates that NHC can also act as a strong anchor on oxide surfaces.

5.
Phys Chem Chem Phys ; 24(26): 15891-15903, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35762384

RESUMO

The magnetic ground state and the hyperfine coupling parameters of some first-row transition metal (TM) atoms (Ti, Cr, Mn, Fe, Co, and Ni) adsorbed on ultrathin insulating oxide films are studied by means of DFT calculations. The results obtained using GGA, screened hybrid, and GGA+U functionals are compared for TMs adsorbed on free-standing MgO(100). Then, the case of adsorption on MgO mono- and bilayers supported on Ag(100) is studied using GGA+U. Along with the problematic aspects inherent to the calculation of hyperfine coupling constants, a critical dependence on the magnetic state and electron configuration of the TM is reported, which implies a real challenge for the state-of-the-art DFT methods. In the cases where all functionals considered provide a coherent magnetic and electron configuration, however, the calculated hyperfine parameters do not depend significantly on the choice of the functional. In this respect, the role of the metal support in the hyperfine coupling constants is highly system-dependent and becomes crucial in all cases where the support modifies the oxidation state of the adatom, induces a change in the bonding site or simply induces a rearrangement of the orbital energy diagram. This has important implications for the modelling of single TM atoms deposited on insulating ultrathin films supported on metals for application in quantum technologies or as memory devices.

6.
Chem Soc Rev ; 51(10): 3898-3925, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35481480

RESUMO

The global warming crisis has sparked a series of environmentally cautious trends in chemistry, allowing us to rethink the way we conduct our synthesis, and to incorporate more earth-abundant materials in our catalyst design. "Single-atom catalysis" has recently appeared on the catalytic spectrum, and has truly merged the benefits that homogeneous and heterogeneous analogues have to offer. Further still, the possibility to activate these catalysts by means of a suitable electric potential could pave the way for a true integration of diverse synthetic methodologies and renewable electricity. Despite their esteemed benefits, single-atom electrocatalysts are still limited to the energy sector (hydrogen evolution reaction, oxygen reduction, etc.) and numerous examples in the literature still invoke the use of precious metals (Pd, Pt, Ir, etc.). Additionally, batch electroreactors are employed, which limit the intensification of such processes. It is of paramount importance that the field continues to grow in a more sustainable direction, seeking new ventures into the space of organic electrosynthesis and flow electroreactor technologies. In this piece, we discuss some of the progress being made with earth abundant homogeneous and heterogeneous electrocatalysts and flow electrochemistry, within the context of organic electrosynthesis, and highlight the prospects of alternatively utilizing single-atom catalysts for such applications.

7.
Angew Chem Int Ed Engl ; 61(30): e202202127, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35468246

RESUMO

N-Heterocyclic carbenes (NHCs) have superior properties as building blocks of self-assembled monolayers (SAMs). Understanding the influence of the substrate in the molecular arrangement is a fundamental step before employing these ligands in technological applications. Herein, we study the molecular arrangement of a model NHC on Cu(100) and Cu(111). While mostly disordered phases appear on Cu(100), on Cu(111) well-defined structures are formed, evolving from magic-number islands to molecular ribbons with coverage. This work presents the first example of magic-number islands formed by NHC assemblies on flat surfaces. Diffusion and commensurability are key factors explaining the observed arrangements. These results shed light on the molecule-substrate interaction and open the possibility of tuning nanopatterned structures based on NHC assemblies.

8.
J Phys Chem C Nanomater Interfaces ; 126(2): 1132-1139, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35087609

RESUMO

Mixed-dimensional van der Waals heterostructures formed by molecular assemblies and 2D materials provide a novel platform for fundamental nanoscience and future nanoelectronics applications. Here we investigate a prototypical hybrid heterostructure between pentacene molecules and 2D MoS2 nanocrystals, deposited on Au(111) by combining pulsed laser deposition and organic molecular beam epitaxy. The obtained structures were investigated in situ by scanning tunneling microscopy and spectroscopy and analyzed theoretically by density functional theory calculations. Our results show the formation of atomically thin pentacene/MoS2 lateral heterostructures on the Au substrate. The most stable pentacene adsorption site corresponds to MoS2 terminations, where the molecules self-assemble parallel to the direction of MoS2 edges. The density of states changes sharply across the pentacene/MoS2 interface, indicating a weak interfacial coupling, which leaves the electronic signature of MoS2 edge states unaltered. This work unveils the self-organization of abrupt mixed-dimensional lateral heterostructures, opening to hybrid devices based on organic/inorganic one-dimensional junctions.

9.
ACS Appl Energy Mater ; 4(8): 8421-8431, 2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34485843

RESUMO

Photoelectrochemical solar energy conversion offers a way to directly store light into energy-rich chemicals. Photoanodes based on the WO3/BiVO4 heterojunction are most effective mainly thanks to the efficient separation of photogenerated charges. The WO3/BiVO4 interfacial space region in the heterojunction is investigated here with the increasing thickness of the BiVO4 layer over a WO3 scaffold. On the basis of X-ray diffraction analysis results, density functional theory simulations show a BiVO4 growth over the WO3 layer along the BiVO4 {010} face, driven by the formation of a stable interface with new covalent bonds, with a favorable band alignment and band bending between the two oxides. This crystal facet phase matching allows a smooth transition between the electronic states of the two oxides and may be a key factor ensuring the high efficiency attained with this heterojunction. The photoelectrochemical activity of the WO3/BiVO4 photoanodes depends on both the irradiation wavelength and the thickness of the visible-light-absorbing BiVO4 layer, a 75 nm thick BiVO4 layer on WO3 being best performing.

10.
Chemistry ; 27(53): 13306-13317, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34264526

RESUMO

Electronic structure calculations provide a useful complement to experimental characterization tools in the atomic-scale design of semiconductor heterojunctions for photocatalysis. The band alignment of the heterojunction is of fundamental importance to achieve an efficient charge carrier separation, so as to reduce electron/hole recombination and improve photoactivity. The accurate prediction of the offsets of valence and conduction bands in the constituent units is thus of key importance but poses several methodological and practical problems. In this Minireview we address some of these problems by considering selected examples of binary and ternary semiconductor heterojunctions and how these are determined at the level of density functional theory (DFT). The atomically precise description of the interface, the consequent charge polarization, the role of quantum confinement, the possibility to use facet engineering to determine a specific band alignment, are among the effects discussed, with particular attention to pros and cons of each one of these aspects. This analysis shows the increasingly important role of accurate electronic structure calculations to drive the design and the preparation of new interfaces with desired properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA