Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Carbohydr Polym ; 335: 122086, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38616071

RESUMO

Recently, attention has been paid to cellulose nanofibers, such as 2,2,6,6-tetramethylpiperidine-1-oxyl-oxidized cellulose nanofibers (TOCN), as new bio-based materials. In addition, hydrophobized surface on TOCNs can be expected to provide new applications. Based on our previous finding that partially 2-deoxygenated (P2D)-amylose, which was synthesized by GP-catalyzed enzymatic copolymerization of D-glucal with α-d-glucose 1-phosphate (Glc-1-P) as comonomers, was hydrophobic, in this study, hydrophobization of surfaces on TOCNs was investigated by the GP-catalyzed enzymatic grafting of P2D-amylose chains on TOCNs. After maltooligosaccharide primers were modified on TOCNs, the GP-catalyzed enzymatic copolymerization of D-glucal with Glc-1-P was performed for grafting of P2D-amylose chains. 1H NMR spectroscopic analysis confirmed the production of P2D-amylose-grafted TOCNs with different 2-deoxyglucose/Glc unit ratios. The powder X-ray diffraction profiles of the products indicated that the entire crystalline structures were strongly affected by the unit ratios and chain lengths of the grafted polysaccharides. The SEM images observed differences in nanofiber diameter in the reaction solutions and surface morphology after film formation, due to grafting of P2D-amylose chains from TOCNs. The water contact angle measurement of a cast film prepared from the product indicated its hydrophobicity.


Assuntos
Celulose Oxidada , Nanofibras , Celulose , Amilose , Gluconato de Cálcio
2.
Molecules ; 29(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38675624

RESUMO

We prepared network polysaccharide nanoscopic hydrogels by crosslinking water-soluble chitosan (WSCS) with a carboxylate-terminated maltooligosaccharide crosslinker via condensation. In this study, the enzymatic elongation of amylose chains on chitosan-based network polysaccharides by glucan phosphorylase (GP) catalysis was performed to obtain assembly materials. Maltoheptaose (Glc7) primers for GP-catalyzed enzymatic polymerization were first introduced into WSCS by reductive amination. Crosslinking of the product with the above-mentioned crosslinker by condensation was then performed to produce Glc7-modified network polysaccharides. The GP-catalyzed enzymatic polymerization of the α-d-glucose 1-phosphate monomer from the Glc7 primers on the network polysaccharides was conducted, where the elongated amylose chains formed double helices. Enzymatic disintegration of the resulting network polysaccharide assembly successfully occurred by α-amylase-catalyzed hydrolysis of the double helical amyloses. The encapsulation and release of a fluorescent dye, Rhodamine B, using the CS-based network polysaccharides were also achieved by means of the above two enzymatic approaches.


Assuntos
Quitosana , Corantes Fluorescentes , Glucanos , Polissacarídeos , Quitosana/química , Corantes Fluorescentes/química , Polissacarídeos/química , Rodaminas/química , Hidrogéis/química , alfa-Amilases/química , alfa-Amilases/metabolismo , Hidrólise , Amilose/química , Polimerização , Oligossacarídeos/química , Glucofosfatos/química , Glucofosfatos/metabolismo
3.
Soft Matter ; 19(38): 7459-7467, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37750204

RESUMO

Recently, environmentally degradable polymers have received great attention from the perspective of sustaining the aquatic environment. To control the degradation behavior of solid polymer materials in an aqueous phase, it is crucial to better understand the thermal molecular motion of polymer chains in water. We herein focus on polyglycolide (PGA), which is one of the representative aliphatic polyesters that are hydrolytically degradable. Three kinds of fiber mats of PGA with different fiber diameters and comparable crystallinities were prepared using an electrospinning method. Our choice of fiber mats was because the ratio of the surface area, where the hydrolytic degradation starts to occur, to the volume was larger than that for the films. Dynamic mechanical analysis (DMA) enabled us to gain direct access to the dynamic glass transition temperature (Tgα) of PGA in the fiber mats both in dry gaseous nitrogen and liquid water. The Tgα value varied not only with the presence of water molecules, but also with the fiber diameter, or the specific surface area. The degradation behavior of PGA fiber mats was examined by immersing the samples in phosphate-buffered saline at various temperatures. When the segmental motion of PGA in the fiber mats was released, the apparent crystallinity of the mats increased, meaning that PGA amorphous chains were cleaved and thus partially eluted into the aqueous phase. It was also shown that partially cleaved chains crystallized.

4.
Langmuir ; 37(51): 14911-14919, 2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34902971

RESUMO

The mechanical properties in the outermost region of a polymer film strongly affect various material functions. We here propose a novel and promising strategy for the two-dimensional regulation of the mechanical properties of a polymer film at the water interface based on an inkjet drawing of silica nanoparticles (SNPs) underneath it. A film of poly(2-hydroxyethyl methacrylate) (PHEMA), which exhibits excellent bioinertness properties at the water interface, was well fabricated on a substrate with a pattern of SNPs. X-ray photoelectron spectroscopy and atomic force microscopy confirmed that the surface of the PHEMA film was flat and chemically homogeneous. However, the film surface was in-plane heterogeneous in stiffness due to the presence of the underlying SNP lines. It was also noted that NIH/3T3 fibroblast cells selectively adhered and formed aggregates on the areas under which an SNP line was drawn.


Assuntos
Poli-Hidroxietil Metacrilato , Água , Microscopia de Força Atômica , Espectroscopia Fotoeletrônica
5.
ACS Appl Bio Mater ; 3(11): 7363-7368, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-35019478

RESUMO

We designed an amphiphilic block copolymer, poly(methyl methacrylate)-block-poly[oligo(2-ethyl-2-oxazoline) methacrylate] (PMMA-b-P[O(Ox)MA]), suitable for bioinert coating. Angular-dependent X-ray photoelectron spectroscopy and neutron reflectivity measurements revealed that the outermost surface of a dried film of PMMA-b-P[O(Ox)MA] was covered with the PMMA block-rich layer. Once the film came into contact with water, the P[O(Ox)MA] bottlebrush block was segregated toward the water interface. This structural rearrangement in the outermost region of the film resulted in the formation of the swollen oligo(oxazoline) layer with excellent bioinertness in terms of the suppression of serum protein adsorption and NIH3T3 fibroblast adhesion.

6.
J Mater Chem B ; 7(7): 1045-1049, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-32254771

RESUMO

A star-like hyperbranched polymer having hydrophilic poly(ethyleneoxide acrylate) arms (HB-PEO9A) was prepared by a core-first method based on atom transfer radical polymerization. The PEO9A layer coated on a solid substrate was dissolved by water, and effectively inhibited protein adsorption and cell adhesion.


Assuntos
Incrustação Biológica/prevenção & controle , Polímeros/química , Adsorção , Animais , Adesão Celular/efeitos dos fármacos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Células NIH 3T3 , Poli-Hidroxietil Metacrilato/química , Poli-Hidroxietil Metacrilato/farmacologia , Polímeros/farmacologia , Proteínas/química
7.
J Med Chem ; 58(21): 8658-70, 2015 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-26457363

RESUMO

trans-Bisthioglycosylated tetrakis(fluorophenyl)chlorin (7) was designed as a powerful photodynamic therapy (PDT) photosensitizer based on the findings of our systematic studies. We show here that the trans-bisthioglycosylated structure of 7 enhanced its uptake by HeLa cells and that the chlorin ring of 7 increased the efficiency of reactive oxygen species generation under the standard condition of our photocytotoxicity test. The versatility of 7 in PDT treatment was established using weakly metastatic B16F1 melanoma cells, metastatic 4T1 breast cancer cells, the RGK-1 gastric carcinoma mucosal cell line, and three human glioblastoma cell lines (U87, U251, and T98G). The pharmacokinetics of 7 in mice bearing 4T1 breast cancer cells showed a high tumor-to-skin concentration ratio (approximately 60) at 24 h after intraperitoneal injection. The PDT efficacy of 7 in vivo was approximately 250-times higher than that of mono-l-aspartyl chlorin e6 (9) in mice bearing 4T1 breast cancer cells.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Hidrocarbonetos Clorados/química , Hidrocarbonetos Clorados/uso terapêutico , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/uso terapêutico , Animais , Mama/efeitos dos fármacos , Mama/patologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Halogenação , Humanos , Hidrocarbonetos Clorados/síntese química , Hidrocarbonetos Clorados/farmacocinética , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Fotoquimioterapia , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/farmacocinética
8.
Biomater Sci ; 2(9): 1172-1185, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25485105

RESUMO

We demonstrate utilization of star-shaped polymers as high-density polymer brush coatings and their effectiveness to inhibit the adhesion of platelets and bacteria. Star polymers consisting of poly(2-hydroxyethyl methacrylate) (PHEMA) and/or poly(methyl methacrylate) (PMMA), were synthesized using living radical polymerization with a ruthenium catalyst. The polymer coatings were prepared by simple drop casting of the polymer solution onto poly(ethylene terephthalate) (PET) surfaces and then dried. Among the star polymers prepared in this study, the PHEMA star polymer (star-PHEMA) and the PHEMA/PMMA (mol. ratio of 71/29) heteroarm star polymer (star-H71M29) coatings showed the highest percentage of inhibition against platelet adhesion (78-88% relative to noncoated PET surface) and Escherichia coli (94-97%). These coatings also showed anti-adhesion activity against platelets after incubation in Dulbecco's phosphate buffered saline or surfactant solution for 7 days. In addition, the PMMA component of the star polymers increased the scratch resistance of the coating. These results indicate that the star-polymer architecture provides high polymer chain density on PET surfaces to prevent adhesion of platelets and bacteria, as well as coating stability and physical durability to prevent exposure of bare PET surfaces. The star polymers provide a simple and effective approach to preparing anti-adhesion polymer coatings on biomedical materials against the adhesion of platelets and bacteria.

9.
Bioconjug Chem ; 23(9): 1881-90, 2012 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-22946640

RESUMO

Palladium(II) complexes of glycoconjugated porphyrin and pyrrolidine-fused chlorin were prepared to examine sugar and heavy atom effects on in vitro photocytotoxicity. Cellular uptake into HeLa cells was enhanced by introducing sugar units regardless of other features, such as the central ion (free base or palladium(II) ion) and the ring structure (porphyrin or chlorin). The palladium(II) complex of glycoconjugated pyrrolidine-fused chlorin (PdPC2) exerted an excellent degree of photocytotoxicity not only on HeLa cells, but also on metastatic B16-BL6 cells, weakly metastatic B16F1 cells, and metastatic 4T1 cells. However, free-base glycoconjugated pyrrolidine-fused chlorin (PC2) also exerted similar or much higher photocytotoxicity rather than PdPC2. Therefore, the palladium(II) ion did not improve the in vitro photocytotoxicity of PC2. The enhanced singlet oxygen generation of palladium(II) complexes (i.e., the heavy atom effect) was confirmed at least in O(2)-saturated D(2)O. In addition, the formation of hydrogen peroxide and hydroxyl radical were also detected in O(2)-saturated phosphate buffered saline. However, the reactive oxygen species (ROS) generation efficiency, which is the product of the (relative) quantum yield of each ROS and the light absorbing ability, did not fit the trends of photocytotoxicity seen for the photosensitizers. In our glycoconjugated photosensitizers tested, the best indicator of the photocytotoxicity was found to be the light absorbing ability (namely, the oscillator strength in the wavelength region applied in the photocytotoxicity test). These results indicated that photochemical characteristics of glycoconjugated photosensitizers were notably susceptible to the microenvironment. The biological characteristics, such as the sugar effect, were a much more reliable approach to improving the photocytotoxicity of photosensitizers.


Assuntos
Carboidratos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Glicoconjugados/farmacologia , Paládio/química , Porfirinas/química , Linhagem Celular Tumoral , Glicoconjugados/química , Humanos , Espectroscopia de Ressonância Magnética , Espécies Reativas de Oxigênio/metabolismo , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA