Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
FEBS J ; 291(7): 1560-1574, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38263933

RESUMO

Flavin mononucleotide (FMN)-dependent ene-reductases constitute a large family of oxidoreductases that catalyze the enantiospecific reduction of carbon-carbon double bonds. The reducing equivalents required for substrate reduction are obtained from reduced nicotinamide by hydride transfer. Most ene-reductases significantly prefer, or exclusively accept, either NADPH or NADH. Despite their usefulness in biocatalytic applications, the structural determinants for cofactor preference remain elusive. We employed the NADPH-preferring 12-oxophytodienoic acid reductase 3 from Solanum lycopersicum (SlOPR3) as a model enzyme of the ene-reductase family and applied computational and structural methods to investigate the binding specificity of the reducing coenzymes. Initial docking results indicated that the arginine triad R283, R343, and R366 residing on and close to a critical loop at the active site (loop 6) are the main contributors to NADPH binding. In contrast, NADH binds unfavorably in the opposite direction toward the ß-hairpin flap within a largely hydrophobic region. Notably, the crystal structures of SlOPR3 in complex with either NADPH4 or NADH4 corroborated these different binding modes. Molecular dynamics simulations confirmed NADH binding near the ß-hairpin flap and provided structural explanations for the low binding affinity of NADH to SlOPR3. We postulate that cofactor specificity is determined by the arginine triad/loop 6 and the residue(s) controlling access to a hydrophobic cleft formed by the ß-hairpin flap. Thus, NADPH preference depends on a properly positioned arginine triad, whereas granting access to the hydrophobic cleft at the ß-hairpin flap favors NADH binding.


Assuntos
NAD , Oxirredutases , Oxirredutases/metabolismo , NADP/metabolismo , NAD/metabolismo , Arginina , Carbono , Mononucleotídeo de Flavina/química , Sítios de Ligação , NADH NADPH Oxirredutases/química
2.
Sci Adv ; 9(31): eadh4721, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37531459

RESUMO

Regulatory proteins play a crucial role in adaptation to environmental cues. Especially for lifestyle transitions, such as cell proliferation or apoptosis, switch-like characteristics are desirable. While nature frequently uses regulatory circuits to amplify or dampen signals, stand-alone protein switches are interesting for applications like biosensors, diagnostic tools, or optogenetics. However, such stand-alone systems frequently feature limited dynamic and operational ranges and suffer from slow response times. Here, we characterize a LOV-activated diguanylate cyclase (LadC) that offers precise temporal and spatial control of enzymatic activity with an exceptionally high dynamic range over four orders of magnitude. To establish this pronounced activation, the enzyme exhibits a two-stage activation process in which its activity is inhibited in the dark by caging its effector domains and stimulated upon illumination by the formation of an extended coiled-coil. These switch-like characteristics of the LadC system can be used to develop new optogenetic tools with tight regulation.


Assuntos
Proteínas de Escherichia coli , Luz , Fósforo-Oxigênio Liases/genética , Estimulação Luminosa , Optogenética
3.
Viruses ; 13(12)2021 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-34960817

RESUMO

Rapid molecular surveillance of SARS-CoV-2 S-protein variants leading to immune escape and/or increased infectivity is of utmost importance. Among global bottlenecks for variant monitoring in diagnostic settings are sequencing and bioinformatics capacities. In this study, we aimed to establish a rapid and user-friendly protocol for high-throughput S-gene sequencing and subsequent automated identification of variants. We designed two new primer pairs to amplify only the immunodominant part of the S-gene for nanopore sequencing. Furthermore, we developed an automated "S-Protein-Typer" tool that analyzes and reports S-protein mutations on the amino acid level including a variant of concern indicator. Validation of our primer panel using SARS-CoV-2-positive respiratory specimens covering a broad Ct range showed successful amplification for 29/30 samples. Restriction to the region of interest freed sequencing capacity by a factor of 12-13, compared with whole-genome sequencing. Using either the MinION or Flongle flow cell, our sequencing strategy reduced the time required to identify SARS-CoV-2 variants accordingly. The S-Protein-Typer tool identified all mutations correctly when challenged with our sequenced samples and 50 deposited sequences covering all VOCs (December 2021). Our proposed S-protein variant screening offers a simple, more rapid, and low-cost entry into NGS-based SARS-CoV-2 analysis, compared with current whole-genome approaches.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequenciamento por Nanoporos/métodos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , COVID-19/epidemiologia , COVID-19/virologia , Monitoramento Epidemiológico , Genótipo , Humanos , Evasão da Resposta Imune/genética , Mutação , SARS-CoV-2/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA