Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioresour Technol ; 383: 129225, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37244306

RESUMO

This work aimed to develop innovative material by combining properties of magnetic-biochar (derived from peanut shells) and hydrogel bead (MBA-bead) and apply it for adsorbing Cu2+ in water. MBA-bead was synthesized by physical cross-linking methods. Results indicated that MBA-bead contained ∼90% water. The diameter of each spherical MBA-bead was approximately 3 mm (wet form) and 2 mm in (dried form). Its specific surface area (262.4 m2/g) and total pore volume (0.751 cm3/g) were obtained from nitrogen adsorption at 77 K. X-ray diffraction data confirmed Fe3O4 presented in magnetic-biochar and MBA-bead. Its Langmuir maximum adsorption capacity for Cu2+ was 234.1 mg/g (30 °C and pHeq 5.0). The change in standard enthalpy (ΔH°) of the adsorption was 44.30 kJ/mol (dominant physical adsorption). Primary adsorption mechanisms were complexation, ion exchange, and Van der Waals force. Laden MBA-bead can be reused several cycles after desorbing with NaOH or HCl. The cost was estimated for producing PS-biochar (0.091 US$/kg), magnetic-biochar (0.303-0.892 US$/kg), and MBA-bead (1.369-3.865 US$/kg). MBA-bead can serve as an excellent adsorbent for removing Cu2+ ions from water.


Assuntos
Cobre , Poluentes Químicos da Água , Alginatos , Água , Carvão Vegetal , Adsorção , Íons , Fenômenos Magnéticos , Cinética
2.
Polymers (Basel) ; 14(14)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35890596

RESUMO

In the present work, we report a simple synthesis method for preparation of copolymers and nanocomposites from limonene and styrene using clay as a catalyst. The copolymerization reaction is carried out by using a proton exchanged clay as a catalyst called Mag-H+. The effect of temperature, reaction time and amount of catalyst were studied, and the obtained copolymer structure (lim-co-sty) is characterized by Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance spectroscopy (1H-NMR) and differential scanning calorimetry (DSC). The molecular weight of the obtained copolymer is determined by gel permeation chromatography (GPC) and is about 4500 g·mol-1. The (lim-co-sty/Mag 1%, 3%, 7% and 10% by weight of clay) nanocomposites were prepared through polymer/clay mixture in solution method using ultrasonic irradiation, in the presence of Mag-CTA+ as green nano-reinforcing filler. The Mag-CTA+ is organophilic silicate clay prepared through a direct exchange process, using cetyltrimethylammonuim bromide (CTAB). The prepared lim-co-sty/Mag nanocomposites have been extensively characterized by FT-IR spectroscopy, X-ray diffraction (XRD), scanning electronic microscopy (SEM) and transmission electronic microscopy (TEM). TEM analysis confirms the results obtained by XRD and clearly show that the obtained nanocomposites are partially exfoliated for the lower amount of clay (1% and 3% wt) and intercalated for higher amounts of clay (7% and 10% wt). Moreover, thermogravimetric analysis (TGA) indicated an enhancement of thermal stability of nanocomposites compared with the pure copolymer.

3.
Water Sci Technol ; 82(12): 2837-2846, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33341774

RESUMO

This study focuses on the synthesis of various nanocomposites with heterojunction structures, MgAl-LDH (LDH = layered double hydroxides) hybrid with semiconductor such as MoO3 and CuO. These solids were synthesized by co-precipitation method at constant pH and have been characterized extensively using atomic absorption spectroscopy (AAS), X-ray diffraction (XRD), Fourier transform infrared (FTIR) and transmission electron microscopy-energy dispersive X-ray (TEM-EDX) methods. The catalytic activity of nanocomposites was tested in the photocatalytic degradation under solar irradiation of emerging pollutants as the pharmaceutical metronidazole (MNZ). The experimental parameters, including initial MNZ concentration, the nature of oxide incorporate in the photocatalyst, catalyst loading were explored. All the synthesized samples showed high photocatalytic performances; the highest photocatalysis efficiency was achieved with the photocatalyst dose 1.5 g/L and initial MNZ concentration of 10 mg/L at neutral pH. The photocatalytic experimental results were fitted very well to the Langmuir-Hinshelwood model. From the obtained results the calcined LDH/semiconductors could be efficient for the photocatalytic process under solar irradiation of pharmaceuticals and may contribute in environmental remediation.


Assuntos
Metronidazol , Nanocompostos , Catálise , Hidróxidos , Microscopia Eletrônica de Varredura , Semicondutores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA