Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Nano ; 18(13): 9331-9343, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38498702

RESUMO

Surface acoustic waves (SAWs) convey energy at subwavelength depths along surfaces. Using interdigital transducers (IDTs) and opto-acousto-optic transducers (OAOTs), researchers have harnessed coherent SAWs with nanosecond periods and micrometer localization depth for various applications. These applications include the sensing of small amount of materials deposited on surfaces, assessing surface roughness and defects, signal processing, light manipulation, charge carrier and exciton transportation, and the study of fundamental interactions with thermal phonons, photons, magnons, and more. However, the utilization of cutting-edge OAOTs produced through surface nanopatterning techniques has set the upper limit for coherent SAW frequencies below 100 GHz, constrained by factors such as the quality and pitch of the surface nanopattern, not to mention the electronic bandwidth limitations of the IDTs. In this context, unconventional optically controlled nanotransducers based on cleaved superlattices (SLs) are here presented as an alternative solution. To demonstrate their viability, we conducted proof-of-concept experiments using ultrafast lasers in a pump-probe configuration on SLs made of alternating AlxGa1-xAs and AlyGa1-yAs layers with approximately 70 nm periodicity and cleaved along their growth direction to produce a periodic nanostructured surface. The acoustic vibrations, generated and detected by laser beams incident on the cleaved surface, span a range from 40 to 70 GHz, corresponding to the generalized surface Rayleigh mode and bulk modes within the dispersion relation. This exploration shows that, in addition to SAWs, cleaved SLs offer the potential to observe surface-skimming longitudinal and transverse acoustic waves at GHz frequencies. This proof-of-concept demonstration below 100 GHz in nanoacoustics using such an unconventional platform might be useful for realizing sub-THz to THz coherent surface acoustic vibrations in the future, as SLs can be epitaxially grown with atomic-scale layer width and quality.

2.
Nat Commun ; 15(1): 333, 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184613

RESUMO

In recent years, mechanical metamaterials have been developed that support the propagation of an intriguing variety of nonlinear waves, including transition waves and vector solitons (solitons with coupling between multiple degrees of freedom). Here we report observations of phase transitions in 2D multistable mechanical metamaterials that are initiated by collisions of soliton-like pulses in the metamaterial. Analogous to first-order phase transitions in crystalline solids, we observe that the multistable metamaterials support phase transitions if the new phase meets or exceeds a critical nucleus size. If this criterion is met, the new phase subsequently propagates in the form of transition waves, converting the rest of the metamaterial to the new phase. More interestingly, we numerically show, using an experimentally validated model, that the critical nucleus can be formed via collisions of soliton-like pulses. Moreover, the rich direction-dependent behavior of the nonlinear pulses enables control of the location of nucleation and the spatio-temporal shape of the growing phase.

3.
Ultrasonics ; 132: 106991, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37001341

RESUMO

In Non-Destructive Testing and Evaluation (NDT&E), an ultrasonic method called Nonlinear Coda Wave Interferometry (NCWI) has recently been developed to detect cracks in heterogeneous materials such as concrete. The underlying principle of NCWI is that a pump wave is used to activate the crack breathing which interact with the source probe signal. The resulting signal is then measured at receiver probes. In this work, a static finite element model (FEM) is used to simulate the pump wave/crack interaction in order to quantifies the average effect of the pump waves on a crack. By considering both crack opening and closure phases during the dynamic pump wave excitation, this static model aims to determine the pump stress amplitude for a given relative crack length variation due to the dynamic pump wave excitation at different amplitudes. Numerical results show, after reaching certain stress amplitude, a linear relationship between the relative crack length variation and the equivalent static load when considering a partially closed crack at its tips. Then, numerical NCWI outputs, e.g., the relative velocity change θ and the decorrelation coefficient Kd, have been calculated using a spectral element model (SEM). These results agree with previously published experimental NCWI results derived for a slightly damaged 2D glass plate.

4.
BMC Biol ; 20(1): 292, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36575418

RESUMO

BACKGROUND: The ongoing adaptation of plants to their environment is the basis for their survival. In this adaptation, mechanoperception of gravity and local curvature plays a role of prime importance in finely regulating growth and ensuring a dynamic balance preventing buckling. However, the abiotic environment is not the exclusive cause of mechanical stimuli. Biotic interactions between plants and microorganisms also involve physical forces and potentially mechanoperception. Whether pathogens trigger mechanoperception in plants and the impact of mechanotransduction on the regulation of plant defense remains however elusive. RESULTS: Here, we found that the perception of pathogen-derived mechanical cues by microtubules potentiates the spatio-temporal implementation of plant immunity to fungus. By combining biomechanics modeling and image analysis of the post-invasion stage, we reveal that fungal colonization releases plant cell wall-born tension locally, causing fluctuations of tensile stress in walls of healthy cells distant from the infection site. In healthy cells, the pathogen-derived mechanical cues guide the reorganization of mechanosensing cortical microtubules (CMT). The anisotropic patterning of CMTs is required for the regulation of immunity-related genes in distal cells. The CMT-mediated mechanotransduction of pathogen-derived cues increases Arabidopsis disease resistance by 40% when challenged with the fungus Sclerotinia sclerotiorum. CONCLUSIONS: CMT anisotropic patterning triggered by pathogen-derived mechanical cues activates the implementation of early plant defense in cells distant from the infection site. We propose that the mechano-signaling triggered immunity (MTI) complements the molecular signals involved in pattern and effector-triggered immunity.


Assuntos
Arabidopsis , Mecanotransdução Celular , Sinais (Psicologia) , Plantas , Transdução de Sinais , Imunidade Vegetal , Arabidopsis/genética , Doenças das Plantas , Regulação da Expressão Gênica de Plantas
5.
Ultrasonics ; 119: 106589, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34571435

RESUMO

Zero Group Velocity (ZGV) modes are peculiar guided waves that can exist in elastic plates or cylinders, and have proved to be very sensitive tools in characterizing materials or thickness variations with sub-percent accuracy at space resolutions of about the plate thickness. In this article we show theoretically and experimentally how such a mode can be generated as the sum-frequency interaction of two high amplitude primary waves, and then serve as a local probe of material non-linearity. The solutions to the phase matching condition, i.e. condition for a constructive non-linear effect, are obtained numerically in the mark of classical, quadratic non-linearity. The coupling coefficients that measure the transfer rate of energy as a function of time from primary to secondary modes are derived. Experiments are conducted on an aluminum plate using piezo-electric transducers and a laser interferometer, and explore the interaction for incident symmetric and anti-symmetric fundamental Lamb modes. In an experiment operated without voltage amplifier we demonstrate that the resonant nature of these ZGV modes can be leveraged to accumulate energy from long excitations and produce detectable effects at extraordinarily low input power even in such weakly non-linear material.

6.
Photoacoustics ; 23: 100286, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34430200

RESUMO

Non-invasive fast imaging of grain microstructure of polycrystalline ceria with sub-micrometric spatial resolution is performed via time-domain Brillouin scattering. The propagation of a nanoacoustic pulse is monitored down to 8 µm deep in a 30 × 30 µm2 area. Grains boundaries are reconstructed in three-dimensions via a two-step processing method, relying on the wavelet synchro-squeezed transform and the alphashape algorithm. Imaging contrast is improved by taking advantage of stronger sensitivity to anisotropy of transverse acoustic waves, compared with longitudinal waves. Utilization of transverse waves in the image processing reveals additional boundaries, confirmed by an electron backscattering diffraction pattern but not discerned using longitudinal waves. A buried inclined interface between differently oriented grains is identified by monitoring changes in amplitude (phase) of the portion of the signal associated with transverse (longitudinal) waves. Estimates of the inclination angle of this interface prove the sensitivity of our laser ultrasonic method to image inclined boundaries.

7.
Ultrasonics ; 116: 106483, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34126405

RESUMO

This paper reports a numerical study of the sensitivity and applicability of the Nonlinear Coda Wave Interferometry (NCWI) method in a heterogeneous material with a localized microcracked zone. We model the influence of a strong pump wave on the localized microcracked zone as a small average increase in the length of each crack. Further probing of this microcracked zone with a multiply scattered ultrasonic wave induces small changes to the coda-type signal, which are quantified with coda wave interferometry. A parametric sensitivity study of the CWI observables with respect to the changes in crack length is established via numerical simulations of the problem using a 2D spectral element method (SEM2D). The stretching of the signal, proportional to the relative variation in effective velocity, is found to be linearly proportional to the global change in crack length, while the other CWI parameter, the remnant decorrelation coefficient, is found to be quadratically proportional to the crack length change. The NCWI method is shown to be relevant for the detection of different damaged material states in complex solids. The reported numerical results are especially significant in the context of quantitative nondestructive evaluation of micro-damage level of a heterogeneous materials using nonlinear ultrasound signals.

8.
Proc Natl Acad Sci U S A ; 117(49): 31002-31009, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33219120

RESUMO

Domain walls, commonly occurring at the interface of different phases in solid-state materials, have recently been harnessed at the structural scale to enable additional modes of functionality. Here, we combine experimental, numerical, and theoretical tools to investigate the domain walls emerging upon uniaxial compression in a mechanical metamaterial based on the rotating-squares mechanism. We first show that these interfaces can be generated and controlled by carefully arranging a few phase-inducing defects. We establish an analytical model to capture the evolution of the domain walls as a function of the applied deformation. We then employ this model as a guideline to realize interfaces of complex shape. Finally, we show that the engineered domain walls modify the global response of the metamaterial and can be effectively exploited to tune its stiffness as well as to guide the propagation of elastic waves.

9.
Sci Adv ; 6(18): eaaz1166, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32494671

RESUMO

The unique properties of nonlinear waves have been recently exploited to enable a wide range of applications, including impact mitigation, asymmetric transmission, switching, and focusing. Here, we demonstrate that the propagation of nonlinear waves can be as well harnessed to make flexible structures crawl. By combining experimental and theoretical methods, we show that such pulse-driven locomotion reaches a maximum efficiency when the initiated pulses are solitons and that our simple machine can move on a wide range of surfaces and even steer. Our study expands the range of possible applications of nonlinear waves and demonstrates that they offer a new platform to make flexible machines to move.

10.
Nat Commun ; 11(1): 1597, 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32221281

RESUMO

Characterization of microstructure, chemistry and function of energy materials remains a challenge for instrumentation science. This active area of research is making considerable strides with methodologies that employ bright X-rays, electron microscopy, and optical spectroscopy. However, further development of instruments capable of multimodal measurements, is necessary to reveal complex microstructure evolution in realistic environments. In this regard, laser-based instruments have a unique advantage as multiple methodologies are easily combined into a single instrument. A pump-probe method that uses optically generated acoustic phonons is expanding standard optical characterization by providing depth resolved information. Here we report on an extension of this method to image grain microstructure in ceria. Rich information regarding the orientation of individual crystallites is obtained by noting how the polarization of the probe beam influences the detected signal amplitude. When paired with other optical microscopies, this methodology will provide new perspectives for characterization of ceramic materials.

11.
Proc Natl Acad Sci U S A ; 117(5): 2319-2325, 2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-31969454

RESUMO

Transition fronts, moving through solids and fluids in the form of propagating domain or phase boundaries, have recently been mimicked at the structural level in bistable architectures. What has been limited to simple one-dimensional (1D) examples is here cast into a blueprint for higher dimensions, demonstrated through 2D experiments and described by a continuum mechanical model that draws inspiration from phase transition theory in crystalline solids. Unlike materials, the presented structural analogs admit precise control of the transition wave's direction, shape, and velocity through spatially tailoring the underlying periodic network architecture (locally varying the shape or stiffness of the fundamental building blocks, and exploiting interactions of transition fronts with lattice defects such as point defects and free surfaces). The outcome is a predictable and programmable strongly nonlinear metamaterial motion with potential for, for example, propulsion in soft robotics, morphing surfaces, reconfigurable devices, mechanical logic, and controlled energy absorption.

12.
Phys Rev Lett ; 123(2): 024101, 2019 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-31386527

RESUMO

Soft mechanical metamaterials can support a rich set of dynamic responses, which, to date, have received relatively little attention. Here, we report experimental, numerical, and analytical results describing the behavior of an anisotropic two-dimensional flexible mechanical metamaterial when subjected to impact loading. We not only observe the propagation of elastic vector solitons with three components-two translational and one rotational-that are coupled together, but also very rich direction-dependent behaviors such as the formation of sound bullets and the separation of pulses into different solitary modes.

13.
Ultrasonics ; 99: 105968, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31419760

RESUMO

The numerical studies conducted in this paper are based on our previous research (Chen et al., 2017); through use of the spectral element method, parametric sensitivity studies of Nonlinear Coda Wave Interferometry (NCWI) are established here and divided into two parts. In the first part, CWI observables are found to be proportional to the product of the changes in elastic modulus within the Effective Damaged Zone (EDZ) and the EDZ surface area. The modifications to intrinsic properties are quantified via an overall wave velocity variation, as probed by a reverberated coda wave. However, for high-level changes, CWI may fail due to meaningless decorrelation values. In this context, parametric studies are conducted to yield a maximum range for EDZ contrast and area. To further validate these observations using a more realistic numerical model, instead of introducing a homogeneous EDZ model, the second part of this paper adds random cracks with random orientations into the EDZ of a material sample. The influence of a strong pump wave on localized nonlinear damage is reestablished; results show that the cracks added into the EDZ reduce the property changes required to match the previous experimental dataset.

14.
Nat Commun ; 10(1): 3292, 2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31337755

RESUMO

Systems capable of breaking wave transmission reciprocity have recently led to tremendous developments in wave physics. We report herein on a concept that enables one-way transmission of ultrasounds, an acoustic diode, by relying on the radiation pressure effect. This effect makes it possible to reconfigure a multilayer system by significantly deforming a water-air interface. Such a reconfiguration is then used to achieve an efficient acoustic transmission in a specified direction of propagation but not in the opposite, hence resulting in a highly nonreciprocal transmission. The corresponding concept is experimentally demonstrated using an aluminum-water-air-aluminum multilayer system, providing the means to overcome key limitations of current nonreciprocal acoustic devices. We also demonstrate that this diode functionality can even be extended to the design and operations of an acoustic switch, thus paving the way for new wave control possibilities, such as those based on acoustic transistors, phonon computing and amplitude-dependent filters.

15.
Phys Rev E ; 99(5-1): 052209, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31212504

RESUMO

Nonlinear acoustic metamaterials offer the potential to enhance wave control opportunities beyond those already demonstrated via dispersion engineering in linear metamaterials. Managing the nonlinearities of a dynamic elastic system, however, remains a challenge, and the need now exists for new strategies to model and design these wave nonlinearities. Inspired by recent research on soft architected rotating-square structures, we propose herein a design for a nonlinear elastic metasurface with the capability to achieve nonlinear acoustic wave reflection control. The designed metasurface is composed of a single layer of rotating squares connected to thin and highly deformable ligaments placed between a rigid plate and a wall. It is shown that during the process of reflection at normal incidence, most of the incoming fundamental wave energy can be converted into the second harmonic wave. A conversion coefficient of approximately 0.8 towards the second harmonic is derived with a reflection coefficient of <0.05 at the incoming fundamental frequency. The theoretical results obtained using the harmonic balance method for a monochromatic pump source are confirmed by time-domain simulations for wave packets. The reported design of a nonlinear acoustic metasurface can be extended to a large family of architected structures, thus opening new avenues for realistic metasurface designs that provide for nonlinear or amplitude-dependent wave tailoring.

16.
Phys Rev Lett ; 122(4): 044101, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30768337

RESUMO

We investigate via a combination of experiments and numerical analyses the collision of elastic vector solitons in a chain of rigid units connected by flexible hinges. Because of the vectorial nature of these solitons, very unusual behaviors are observed: while, as expected, the solitons emerge unaltered from the collision if they excite rotations of the same direction, they do not penetrate each other and instead repel one another if they induce rotations of the opposite direction. Our analysis reveals that such anomalous collisions are a consequence of the large-amplitude characteristics of the solitons, which locally modify the properties of the underlying media. Specifically, their large rotations create a significant barrier for pulses that excite rotations of the opposite direction and this may block their propagation. Our findings provide new insights into the collision dynamics of elastic solitary waves. Furthermore, the observed anomalous collisions pave new ways towards the advanced control of large amplitude mechanical pulses, as they provide opportunities to remotely detect, change, or destruct high-amplitude signals and impacts.

17.
Nat Commun ; 9(1): 3410, 2018 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-30143618

RESUMO

We combine experimental, numerical, and analytical tools to design highly nonlinear mechanical metamaterials that exhibit a new phenomenon: gaps in amplitude for elastic vector solitons (i.e., ranges in amplitude where elastic soliton propagation is forbidden). Such gaps are fundamentally different from the spectral gaps in frequency typically observed in linear phononic crystals and acoustic metamaterials and are induced by the lack of strong coupling between the two polarizations of the vector soliton. We show that the amplitude gaps are a robust feature of our system and that their width can be controlled both by varying the structural properties of the units and by breaking the symmetry in the underlying geometry. Moreover, we demonstrate that amplitude gaps provide new opportunities to manipulate highly nonlinear elastic pulses, as demonstrated by the designed soliton splitters and diodes.

18.
Ultrasonics ; 82: 153-160, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28822330

RESUMO

We analyze experimentally and theoretically the sound propagation velocity of P-waves in granular media made of micrometer-size magnetite particles under an external magnetic field. The sound velocity is measured in a coherent (long-wavelength) regime of propagation after a controlled sample preparation consisting of a fluidization and the application of a magnetic field. Several different procedures are applied and result in different but reproducible particle arrangements and preferential contact orientations affecting the measured sound velocity. Interestingly, we find that the sound velocity increases when the magnetic field is applied parallel to the sound propagation direction and decreases when the magnetic field is applied perpendicular to the sound propagation direction. The observed qualitative relationship between the changes in the particle arrangement and the sound velocity is analyzed theoretically based on an effective medium theory adapted to account for the effect of the magnetic field in the preparation procedure and its influence on the medium contact fabric.

19.
J Acoust Soc Am ; 142(4): 2233, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29092560

RESUMO

The field of civil engineering is in need of new methods of non-destructive testing, especially in order to prevent and monitor the serious deterioration of concrete structures. In this work, experimental results are reported on fault detection and characterization in a meter-scale concrete structure using an ultrasonic nonlinear coda wave interferometry (NCWI) method. This method entails the nonlinear mixing of strong pump waves with multiple scattered probe (coda) waves, along with analysis of the net effect using coda wave interferometry. A controlled damage protocol is implemented on a post-tensioned, meter-scale concrete structure in order to generate cracking within a specific area being monitored by NCWI. The nonlinear acoustic response due to the high amplitude of acoustic modulation yields information on the elastic nonlinearities of concrete, as evaluated by two specific nonlinear observables. The increase in nonlinearity level corresponds to the creation of a crack with a network of microcracks localized at its base. In addition, once the crack closes as a result of post-tensioning, the residual nonlinearities confirm the presence of the closed crack. Last, the benefits and applicability of this NCWI method to the characterization and monitoring of large structures are discussed.

20.
Phys Rev Lett ; 118(8): 084302, 2017 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-28282189

RESUMO

We demonstrate both numerically and experimentally that geometric frustration in two-dimensional periodic acoustic networks consisting of arrays of narrow air channels can be harnessed to form band gaps (ranges of frequency in which the waves cannot propagate in any direction through the system). While resonant standing wave modes and interferences are ubiquitous in all the analyzed network geometries, we show that they give rise to band gaps only in the geometrically frustrated ones (i.e., those comprising of triangles and pentagons). Our results not only reveal a new mechanism based on geometric frustration to suppress the propagation of pressure waves in specific frequency ranges but also open avenues for the design of a new generation of smart systems that control and manipulate sound and vibrations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA