Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cortex ; 146: 66-73, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34839219

RESUMO

Determining the generalizability of biological mechanisms supporting psychological constructs is a central goal of cognitive neuroscience. Self-esteem is a popular psychological construct that is associated with a variety of measures of mental health and life satisfaction. Recently, there has been interest in identifying biological mechanisms that support individual differences in self-esteem. Understanding the biological basis of self-esteem requires identifying predictive biomarkers of self-esteem that generalize across groups of individuals. Previous research using diffusion magnetic resonance imaging has shown that self-esteem is related to the integrity of structural connections linking frontostriatal brain systems involved in self-referential processing and reward. However, these findings were based on a small, relatively homogeneous group of participants. In the current study, we used an out-of-sample predictive modeling approach to generalize the results of the previous study to an independent sample of participants more than twice the size of the original study. We found that both linear univariate and multivariate machine learning models trained on frontostriatal integrity from the original data significantly predicted self-esteem in the independent dataset. These findings underscore the relationship between self-esteem and frontostriatal connectivity and suggest these results are robust to differences in scanning acquisition, analytic methods, and participant demographics.


Assuntos
Mapeamento Encefálico , Imageamento por Ressonância Magnética , Encéfalo , Humanos , Recompensa , Autoimagem
2.
Soc Cogn Affect Neurosci ; 16(8): 875-882, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32986092

RESUMO

The medial prefrontal cortex (MPFC) is among the most consistently implicated brain regions in social and affective neuroscience. Yet, this region is also highly functionally heterogeneous across many domains and has diverse patterns of connectivity. The extent to which the communication of functional networks in this area is facilitated by its underlying structural connectivity fingerprint is critical for understanding how psychological phenomena are represented within this region. In the current study, we combined diffusion magnetic resonance imaging and probabilistic tractography with large-scale meta-analysis to investigate the degree to which the functional coactivation patterns of the MPFC are reflected in its underlying structural connectivity. Using unsupervised machine learning techniques, we compared parcellations between the two modalities and found congruence between parcellations at multiple spatial scales. Additionally, using connectivity and coactivation similarity analyses, we found high correspondence in voxel-to-voxel similarity between each modality across most, but not all, subregions of the MPFC. These results provide evidence that meta-analytic functional coactivation patterns are meaningfully constrained by underlying neuroanatomical connectivity and provide convergent evidence of distinct subregions within the MPFC involved in affective processing and social cognition.


Assuntos
Mapeamento Encefálico , Imageamento por Ressonância Magnética , Encéfalo , Humanos , Vias Neurais/diagnóstico por imagem , Córtex Pré-Frontal/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA