Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Plants (Basel) ; 13(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38891291

RESUMO

Members of the calcium-dependent protein kinase (CDPK/CPK) and SNF-related protein kinase (SnRK) superfamilies are commonly found in plants and some protists. Our knowledge of client specificity of the members of this superfamily is fragmentary. As this family is represented by over 30 members in Arabidopsis thaliana, the identification of kinase-specific and overlapping client relationships is crucial to our understanding the nuances of this large family of kinases as directed towards signal transduction pathways. Herein, we used the kinase client (KiC) assay-a relative, quantitative, high-throughput mass spectrometry-based in vitro phosphorylation assay-to identify and characterize potential CPK/SnRK targets of Arabidopsis. Eight CPKs (1, 3, 6, 8, 17, 24, 28, and 32), four SnRKs (subclass 1 and 2), and PPCK1 and PPCK2 were screened against a synthetic peptide library that contains 2095 peptides and 2661 known phosphorylation sites. A total of 625 in vitro phosphorylation sites corresponding to 203 non-redundant proteins were identified. The most promiscuous kinase, CPK17, had 105 candidate target proteins, many of which had already been discovered. Sequence analysis of the identified phosphopeptides revealed four motifs: LxRxxS, RxxSxxR, RxxS, and LxxxxS, that were significantly enriched among CPK/SnRK clients. The results provide insight into both CPK- and SnRK-specific and overlapping signaling network architectures and recapitulate many known in vivo relationships validating this large-scale approach towards discovering kinase targets.

2.
Front Genet ; 12: 780793, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34938321

RESUMO

The self-incompatibility (SI) system in the Solanaceae is comprised of cytotoxic pistil S-RNases which are countered by S-locus F-box (SLF) resistance factors found in pollen. Under this barrier-resistance architecture, mating system transitions from SI to self-compatibility (SC) typically result from loss-of-function mutations in genes encoding pistil SI factors such as S-RNase. However, the nature of these mutations is often not well characterized. Here we use a combination of S-RNase sequence analysis, transcript profiling, protein expression and reproductive phenotyping to better understand different mechanisms that result in loss of S-RNase function. Our analysis focuses on 12 S-RNase alleles identified in SC species and populations across the tomato clade. In six cases, the reason for gene dysfunction due to mutations is evident. The six other alleles potentially encode functional S-RNase proteins but are typically transcriptionally silenced. We identified three S-RNase alleles which are transcriptionally silenced under some conditions but actively expressed in others. In one case, expression of the S-RNase is associated with SI. In another case, S-RNase expression does not lead to SI, but instead confers a reproductive barrier against pollen tubes from other tomato species. In the third case, expression of S-RNase does not affect self, interspecific or inter-population reproductive barriers. Our results indicate that S-RNase expression is more dynamic than previously thought, and that changes in expression can impact different reproductive barriers within or between natural populations.

3.
Int J Mol Sci ; 22(23)2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34884871

RESUMO

Tomato clade species (Solanum sect. Lycopersicon) display multiple interspecific reproductive barriers (IRBs). Some IRBs conform to the SI x SC rule, which describes unilateral incompatibility (UI) where pollen from SC species is rejected on SI species' pistils, but reciprocal pollinations are successful. However, SC x SC UI also exists, offering opportunities to identify factors that contribute to S-RNase-independent IRBs. For instance, SC Solanum pennellii LA0716 pistils only permit SC Solanum lycopersicum pollen tubes to penetrate to the top third of the pistil, while S. pennellii pollen penetrates to S. lycopersicum ovaries. We identified candidate S. pennellii LA0716 pistil barrier genes based on expression profiles and published results. CRISPR/Cas9 mutants were created in eight candidate genes, and mutants were assessed for changes in S. lycopersicum pollen tube growth. Mutants in a gene designated Defective in Induced Resistance 1-like (SpDIR1L), which encodes a small cysteine-rich protein, permitted S. lycopersicum pollen tubes to grow to the bottom third of the style. We show that SpDIR1L protein accumulation correlates with IRB strength and that species with weak or no IRBs toward S. lycopersicum pollen share a 150 bp deletion in the upstream region of SpDIR1L. These results suggest that SpDIR1L contributes to an S-RNase-independent IRB.


Assuntos
Proteínas de Plantas/genética , Pólen/genética , Solanum lycopersicum/genética , Solanum/genética , Sistemas CRISPR-Cas , Cisteína , Flores/genética , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/fisiologia , Mutação , Plantas Geneticamente Modificadas , Reprodução/genética , Ribonucleases/genética , Solanum/fisiologia
4.
New Phytol ; 231(2): 878-891, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33864700

RESUMO

Mating system transitions from self-incompatibility (SI) to self-compatibility (SC) are common in plants. In the absence of high levels of inbreeding depression, SC alleles are predicted to spread due to transmission advantage and reproductive assurance. We characterized mating system and pistil-expressed SI factors in 20 populations of the wild tomato species Solanum habrochaites from the southern half of the species range. We found that a single SI to SC transition is fixed in populations south of the Rio Chillon valley in central Peru. In these populations, SC correlated with the presence of the hab-6 S-haplotype that encodes a low activity S-RNase protein. We identified a single population segregating for SI/SC and hab-6. Intrapopulation crosses showed that hab-6 typically acts in the expected codominant fashion to confer SC. However, we found one specific S-haplotype (hab-10) that consistently rejects pollen of the hab-6 haplotype, and results in SI hab-6/hab-10 heterozygotes. We suggest that the hab-10 haplotype could act as a genetic mechanism to stabilize mixed mating in this population by presenting a disadvantage for the hab-6 haplotype. This barrier may represent a mechanism allowing for the persistence of SI when an SC haplotype appears in or invades a population.


Assuntos
Autoincompatibilidade em Angiospermas , Solanum , Flores , Peru , Pólen/genética , Ribonucleases , Autoincompatibilidade em Angiospermas/genética
5.
J Hered ; 111(2): 216-226, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32072169

RESUMO

A goal of speciation genetics is to understand how the genetic components underlying interspecific reproductive barriers originate within species. Unilateral incompatibility (UI) is a postmating prezygotic barrier in which pollen rejection in the female reproductive tract (style) occurs in only one direction of an interspecific cross. Natural variation in the strength of UI has been observed among populations within species in the wild tomato clade. In some cases, molecular loci underlying self-incompatibility (SI) are associated with this variation in UI, but the mechanistic connection between these intra- and inter-specific pollen rejection behaviors is poorly understood in most instances. We generated an F2 population between SI and SC genotypes of a single species, Solanum pennellii, to examine the genetic basis of intraspecific variation in UI against other species, and to determine whether loci underlying SI are genetically associated with this variation. We found that F2 individuals vary in the rate at which UI rejection occurs. One large effect QTL detected for this trait co-localized with the SI-determining S-locus. Moreover, individuals that expressed S-RNase-the S-locus protein involved in SI pollen rejection-in their styles had much more rapid UI responses compared with those without S-RNase protein. Our analysis shows that intraspecific variation at mate choice loci-in this case at loci that prevent self-fertilization-can contribute to variation in the expression of interspecific isolation, including postmating prezygotic barriers. Understanding the nature of such intraspecific variation can provide insight into the accumulation of these barriers between diverging lineages.


Assuntos
Variação Genética , Pólen/genética , Autoincompatibilidade em Angiospermas , Solanum/genética , Genes de Plantas , Genética Populacional , Genótipo , Solanum lycopersicum/genética , Locos de Características Quantitativas , Reprodução
7.
New Phytol ; 213(1): 440-454, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27516156

RESUMO

In plants, transitions in mating system from outcrossing to self-fertilization are common; however, the impact of these transitions on interspecific and interpopulation reproductive barriers is not fully understood. We examined the consequences of mating system transition for reproductive barriers in 19 populations of the wild tomato species Solanum habrochaites. We identified S. habrochaites populations with self-incompatible (SI), self-compatible (SC) and mixed population (MP) mating systems, and characterized pollen-pistil interactions among S. habrochaites populations and between S. habrochaites and other tomato species. We examined the relationship between mating system, floral morphology, interspecific and interpopulation compatibility and pistil SI factors. We documented five distinct phenotypic groups by combining reproductive behavior with molecular data. Transitions from SI to MP were not associated with weakened interspecific reproductive barriers or loss of known pistil SI factors. However, transitions to SC at the northern range margin were accompanied by loss of S-RNase, smaller flowers, and weakened (or absent) interspecific pollen-pistil barriers. Finally, we identified a subset of SC populations that exhibited a partial interpopulation reproductive barrier with central SI populations. Our results support the hypothesis that shifts in mating system, followed by additional loss-of-function mutations, impact reproductive barriers within and between species.


Assuntos
Solanum/fisiologia , Flores/anatomia & histologia , Flores/fisiologia , Frutas/fisiologia , Geografia , Germinação , Fenótipo , Proteínas de Plantas/metabolismo , Tubo Polínico/fisiologia , Reprodução/fisiologia , Sementes/crescimento & desenvolvimento , Autofertilização/fisiologia , Especificidade da Espécie
8.
Plant J ; 89(4): 718-729, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27862494

RESUMO

Plants have mechanisms to recognize and reject pollen from other species. Although widespread, these mechanisms are less well understood than the self-incompatibility (SI) mechanisms plants use to reject pollen from close relatives. Previous studies have shown that some interspecific reproductive barriers (IRBs) are related to SI in the Solanaceae. For example, the pistil SI proteins S-RNase and HT protein function in a pistil-side IRB that causes rejection of pollen from self-compatible (SC) red/orange-fruited species in the tomato clade. However, S-RNase-independent IRBs also clearly contribute to rejecting pollen from these species. We investigated S-RNase-independent rejection of Solanum lycopersicum pollen by SC Solanum pennellii LA0716, SC. Solanum habrochaites LA0407, and SC Solanum arcanum LA2157, which lack functional S-RNase expression. We found that all three accessions express HT proteins, which previously had been known to function only in conjunction with S-RNase, and then used RNAi to test whether they also function in S-RNase-independent pollen rejection. Suppressing HT expression in SC S. pennellii LA0716 allows S. lycopersicum pollen tubes to penetrate farther into the pistil in HT suppressed plants, but not to reach the ovary. In contrast, suppressing HT expression in SC. Solanum habrochaites LA0407 and in SC S. arcanum LA2157 allows S. lycopersicum pollen tubes to penetrate to the ovary and produce hybrids that, otherwise, would be difficult to obtain. Thus, HT proteins are implicated in both S-RNase-dependent and S-RNase-independent pollen rejection. The results support the view that overall compatibility results from multiple pollen-pistil interactions with additive effects.


Assuntos
Pólen/metabolismo , Pólen/fisiologia , Polinização/genética , Ribonucleases/metabolismo , Solanum/metabolismo , Solanum/fisiologia , Cruzamentos Genéticos , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum lycopersicum/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pólen/genética , Polinização/fisiologia , Ribonucleases/genética , Solanum/genética
9.
Am J Bot ; 103(10): 1847-1861, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27793860

RESUMO

PREMISE OF THE STUDY: Self-incompatibility (SI) is a mechanism that prevents inbreeding in many plant species. The mutational breakdown of SI occurs frequently, yet relatively little is known about the evolutionary steps involved in the progressive loss of pistil and pollen SI function. METHODS: In Solanaceae, SI is the S-RNase-based gametophytic type. We used SI and SC populations of the wild tomato species Solanum habrochaites to study natural variation for two pollen SI factors: a Cullin1 (CUL1) protein and an S-locus F-box protein (SLF-23). Pollen compatibility was assessed on an allotriploid tester line encoding an S-RNase recognized by SLF-23. Both pollen factors are required for compatibility on this tester line. Complementation tests and gene sequencing were used to identify mutations in CUL1 or SLF-23. KEY RESULTS: We detected loss-of-function mutations in CUL1 and/or SLF-23 in SC populations collected near the northern and southern geographic margins of this taxon's natural range. Nonmarginal SC and all SI accessions expressed mostly functional alleles of these pollen factors. Comparison of the CUL1 sequences identified several shared deletion mutations present in both northern and southern margin SC accessions. CONCLUSIONS: Loss-of-function mutations in CUL1 and SLF-23 likely became fixed relatively late during SI to SC transitions, after loss of pistil SI function. Mutations in CUL1 establish unilateral incompatibility with SI populations and strengthen reproductive isolation. Point mutations common to northern and southern SC biotypes likely derive from shared ancestral variants found in more central SI populations.


Assuntos
Proteínas Culina/genética , Proteínas de Plantas/genética , Isolamento Reprodutivo , Autoincompatibilidade em Angiospermas , Solanum/fisiologia , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Proteínas Culina/química , Proteínas Culina/metabolismo , DNA Complementar/genética , DNA Complementar/metabolismo , Mutação , Filogenia , Dispersão Vegetal , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Alinhamento de Sequência , Solanum/genética
10.
Curr Biol ; 26(3): R115-7, 2016 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-26859267

RESUMO

In a new study, the Papaver rhoeas (poppy family) self-incompatibility system has been transferred into Arabidopsis thaliana, a distantly related plant with a very different floral structure. The simple poppy self-incompatibility system may finally make it possible to introduce this potentially valuable trait into any plant.


Assuntos
Arabidopsis/fisiologia , Hibridização Genética/fisiologia , Papaver/fisiologia , Proteínas de Plantas/fisiologia , Autoincompatibilidade em Angiospermas/fisiologia
11.
Mitochondrion ; 19 Pt B: 144-53, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24846799

RESUMO

The Arabidopsis thaliana genome includes three genes for mitochondrial dihydrolipoamide acetyltransferase, the E2-component of the mitochondrial pyruvate dehydrogenase complex (PDC). Two genes encode E2-proteins with a single lipoyl domain, while the third has a two-lipoyl domain structure. Transcripts for each E2 protein were expressed in all plant organs. Each recombinant AtmtE2 can individually form an icosahedral PDC core structure, and results from bimolecular fluorescence complementation assays are consistent with formation of hetero-core structures from all permutations of the AtmtE2 proteins. We propose a unique regulatory mechanism involving dynamic formation of hetero-core complexes that include both mono- and di-lipoyl forms of AtmtE2.


Assuntos
Arabidopsis/enzimologia , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas Mitocondriais/metabolismo , Complexo Piruvato Desidrogenase/metabolismo , Arabidopsis/química , Arabidopsis/metabolismo , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase/química , Substâncias Macromoleculares/ultraestrutura , Microscopia Eletrônica de Transmissão , Multimerização Proteica , Complexo Piruvato Desidrogenase/química
12.
Plant J ; 77(5): 727-36, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24387692

RESUMO

Interspecific reproductive barriers are poorly understood, but are central to the biological species concept. The pre-zygotic barriers between red- and green-fruited species in the tomato clade of the genus Solanum provide a model to better understand these barriers in plants. Compatibility usually follows the SI x SC rule: pollen from self-compatible (SC) red-fruited species is rejected on pistils of the predominantly self-incompatible (SI) green-fruited species, but the reciprocal crosses are compatible. This suggests that the interspecific reproductive barrier may be linked to the intraspecific SI mechanism. However, pollen from the SC red-fruited species is also rejected by SC accessions of green-fruited species that lack S-RNase, a key protein expressed in pistils of SI Solanum species. Thus, multiple mechanisms may contribute to the barrier between red- and green-fruited species. We tested whether an S-RNase-dependent barrier is sufficient for rejection of pollen from red-fruited species by introducing functional S-RNase, HT-A and HT-B genes from SI species into Solanum lycopersicum (cultivated tomato). We found that expressing S-RNase in combination with either HT-A or HT-B in the pistil is sufficient to cause rejection of pollen from all four red-fruited species. Thus, redundant mechanisms must operate side by side to prevent crosses between red- and green-fruited species in the clade, underlining the complexity of interspecific pollination barriers. Our results also have implications for mating system transitions. We suggest that these transitions must occur in a specific sequence, and that the transition from SI to SC also affects interspecific compatibility.


Assuntos
Flores/fisiologia , Autoincompatibilidade em Angiospermas , Solanum lycopersicum/fisiologia , Genes de Plantas , Proteínas de Plantas/metabolismo , Ribonucleases/metabolismo
13.
Protoplasma ; 251(1): 265-71, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23832523

RESUMO

In the reference dicot plant Arabidopsis thaliana, the PP2C family of P-protein phosphatases includes the products of 80 genes that have been separated into ten multi-protein clades plus six singletons. Clade D includes the products of nine genes distributed among three chromosomes (APD1, At3g12620; APD2, At3g17090; APD3, At3g51370; APD4, At3g55050; APD5, At4g33920; APD6, At4g38520; APD7, At5g02760; APD8, At5g06750; and APD9, At5g66080). As part of a functional genomics analysis of protein phosphorylation, we retrieved expression data from public databases and determined the subcellular protein localization of the members of clade D. While the nine proteins have been grouped together based upon primary sequence alignments, we observed no obvious common patterns in expression or localization. We found chimera with the GFP associated with the nucleus, plasma membrane, the endomembrane system, and mitochondria in transgenic plants.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Genoma de Planta , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Genômica , Microscopia de Fluorescência
14.
J Proteome Res ; 12(2): 937-48, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23270405

RESUMO

While more than a thousand protein kinases (PK) have been identified in the Arabidopsis thaliana genome, relatively little progress has been made toward identifying their individual client proteins. Herein we describe the use of a mass spectrometry-based in vitro phosphorylation strategy, termed Kinase Client assay (KiC assay), to study a targeted-aspect of signaling. A synthetic peptide library comprising 377 in vivo phosphorylation sequences from developing seed was screened using 71 recombinant A. thaliana PK. Among the initial results, we identified 23 proteins as putative clients of 17 PK. In one instance protein phosphatase inhibitor-2 (AtPPI-2) was phosphorylated at multiple-sites by three distinct PK, casein kinase1-like 10, AME3, and a Ser PK-like protein. To confirm this result, full-length recombinant AtPPI-2 was reconstituted with each of these PK. The results confirmed multiple distinct phosphorylation sites within this protein. Biochemical analyses indicate that AtPPI-2 inhibits type 1 protein phosphatase (TOPP) activity, and that the phosphorylated forms of AtPPI-2 are more potent inhibitors. Structural modeling revealed that phosphorylation of AtPPI-2 induces conformational changes that modulate TOPP binding.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Regulação da Expressão Gênica de Plantas , Fosfoproteínas/metabolismo , Proteínas Quinases/metabolismo , Sementes/enzimologia , Motivos de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Ensaios Enzimáticos , Escherichia coli/genética , Espectrometria de Massas , Modelos Moleculares , Dados de Sequência Molecular , Biblioteca de Peptídeos , Fosfoproteínas/genética , Fosfoproteínas/isolamento & purificação , Fosforilação , Ligação Proteica , Mapeamento de Interação de Proteínas , Proteínas Quinases/genética , Proteínas Quinases/isolamento & purificação , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/isolamento & purificação , Proteína Fosfatase 1/metabolismo , Proteínas/genética , Proteínas/isolamento & purificação , Proteínas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Sementes/genética , Transdução de Sinais/genética
15.
J Exp Bot ; 64(1): 265-79, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23166371

RESUMO

Although self-incompatibility (SI) in plants has been studied extensively, far less is known about interspecific reproductive barriers. One interspecific barrier, known as unilateral incongruity or incompatibility (UI), occurs when species display unidirectional compatibility in interspecific crosses. In the wild tomato species Solanum pennellii, both SI and self-compatible (SC) populations express UI when crossed with domesticated tomato, offering a useful model system to dissect the molecular mechanisms involved in reproductive barriers. In this study, the timing of reproductive barrier establishment during pistil development was determined in SI and SC accessions of S. pennellii using a semi-in vivo system to track pollen-tube growth in developing styles. Both SI and UI barriers were absent in styles 5 days prior to flower opening, but were established by 2 days before flower opening, with partial barriers detected during a transition period 3-4 days before flower opening. The developmental expression dynamics of known SI factors, S-RNases and HT proteins, was also examined. The accumulation of HT-A protein coincided temporally and spatially with UI barriers in developing pistils. Proteomic analysis of stigma/styles from key developmental stages showed a switch in protein profiles from cell-division-associated proteins in immature stigma/styles to a set of proteins in mature stigma/styles that included S-RNases, HT-A protein and proteins associated with cell-wall loosening and defense responses, which could be involved in pollen-pistil interactions. Other prominent proteins in mature stigma/styles were those involved in lipid metabolism, consistent with the accumulation of lipid-rich material during pistil maturation.


Assuntos
Flores/crescimento & desenvolvimento , Flores/metabolismo , Proteoma/metabolismo , Solanum/crescimento & desenvolvimento , Solanum/metabolismo , Análise de Variância , Proteínas de Plantas/metabolismo , Tubo Polínico/crescimento & desenvolvimento , Polinização/fisiologia , Proteômica , Reprodução , Ribonucleases/metabolismo , Autoincompatibilidade em Angiospermas , Fatores de Tempo
16.
Plant Physiol ; 156(3): 1535-47, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21562331

RESUMO

Peroxiredoxins (Prxs), thioredoxins (Trxs), and NADPH-thioredoxin reductases (NTRs) constitute central elements of the thiol-disulfide redox regulatory network of plant cells. This study provides a comprehensive survey of this network in the model legume Lotus japonicus. The aims were to identify and characterize these gene families and to assess whether the NTR-Trx systems are operative in nodules. Quantitative reverse transcription-polymerase chain reaction and immunological and proteomic approaches were used for expression profiling. We identified seven Prx, 14 Trx, and three NTR functional genes. The PrxQ1 gene was found to be transcribed in two alternative spliced variants and to be expressed at high levels in leaves, stems, petals, pods, and seeds and at low levels in roots and nodules. The 1CPrx gene showed very high expression in the seed embryos and low expression in vegetative tissues and was induced by nitric oxide and cytokinins. In sharp contrast, cytokinins down-regulated all other Prx genes, except PrxQ1, in roots and nodules, but only 2CPrxA and PrxQ1 in leaves. Gene-specific changes in Prx expression were also observed in response to ethylene, abscisic acid, and auxins. Nodules contain significant mRNA and protein amounts of cytosolic PrxIIB, Trxh1, and NTRA and of plastidic NTRC. Likewise, they express cytosolic Trxh3, Trxh4, Trxh8, and Trxh9, mitochondrial PrxIIF and Trxo, and plastidic Trxm2, Trxm4, and ferredoxin-Trx reductase. These findings reveal a complex regulation of Prxs that is dependent on the isoform, tissue, and signaling molecule and support that redox NTR-Trx systems are functional in the cytosol, mitochondria, and plastids of nodules.


Assuntos
Lotus/metabolismo , Modelos Biológicos , NADP/metabolismo , Peroxirredoxinas/metabolismo , Tiorredoxinas/metabolismo , Éxons/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas/genética , Germinação/efeitos dos fármacos , Immunoblotting , Íntrons/genética , Lotus/efeitos dos fármacos , Lotus/genética , Óxido Nítrico/farmacologia , Especificidade de Órgãos/efeitos dos fármacos , Especificidade de Órgãos/genética , Peroxirredoxinas/genética , Reguladores de Crescimento de Plantas/farmacologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Nódulos Radiculares de Plantas/efeitos dos fármacos , Nódulos Radiculares de Plantas/genética , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento
17.
Enzyme Res ; 2011: 939068, 2011 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-21318135

RESUMO

We have developed an in vitro system for detailed analysis of reversible phosphorylation of the plant mitochondrial pyruvate dehydrogenase complex, comprising recombinant Arabidopsis thalianaα2ß2-heterotetrameric pyruvate dehydrogenase (E1) plus A. thaliana E1-kinase (AtPDK). Upon addition of MgATP, Ser292, which is located within the active-site loop structure of E1α, is phosphorylated. In addition to Ser292, Asp295 and Gly297 are highly conserved in the E1α active-site loop sequences. Mutation of Asp295 to Ala, Asn, or Leu greatly reduced phosphorylation of Ser292, while mutation of Gly297 had relatively little effect. Quantitative two-hybrid analysis was used to show that mutation of Asp295 did not substantially affect binding of AtPDK to E1α. When using pyruvate as a variable substrate, the Asp295 mutant proteins had modest changes in k(cat), K(m), and k(cat)/K(m) values. Therefore, we propose that Asp295 plays an important role in stabilizing the active-site loop structure, facilitating transfer of the γ-phosphate from ATP to the Ser residue at regulatory site one of E1α.

18.
New Phytol ; 189(3): 765-776, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21073469

RESUMO

• In legumes, symbiotic leghemoglobins facilitate oxygen diffusion to the bacteroids, but the roles of nonsymbiotic and truncated hemoglobins are largely unknown. Here the five hemoglobin genes of Lotus japonicus have been functionally characterized to gain insight into their regulatory mechanisms. • Plants were exposed to nitric oxide donors, stressful conditions, and hormones. Gene expression profiling was determined by quantitative PCR, and gene activities were localized using in situ hybridization and promoter-reporter gene fusions. • The LjGLB1-1, LjGLB2, and LjGLB3-1 mRNA expression levels were very high in nodules relative to other plant organs. The expression of these genes was localized in the vascular bundles, cortex, and infected tissue. LjGLB1-1 was the only gene induced by nitric oxide. Cytokinins caused nearly complete inactivation of LjGLB2 and LjGLB3-1 in nodules and induction of LjGLB1-1 in roots. Abscisic acid induced LjGLB1-1 in nodules and LjGLB1-2 and LjGLB2 in roots, whereas polyamines and jasmonic acid induced LjGLB1-1 only in roots. • The enhanced expression of the three types of hemoglobins in nodules, the colocalization of gene activities in nodule and root tissues with high metabolic rates, and their distinct regulatory mechanisms point out complementary roles of hemoglobins and strongly support the hypothesis that LjGLB1-1, LjGLB2, and LjGLB3-1 are required for symbiosis.


Assuntos
Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Lotus/genética , Óxido Nítrico/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Simbiose/genética , Hemoglobinas Truncadas/genética , Bactérias/metabolismo , Expressão Gênica/efeitos dos fármacos , Lotus/metabolismo , Estruturas Vegetais/metabolismo , RNA Mensageiro/metabolismo , Hemoglobinas Truncadas/metabolismo
19.
Anal Biochem ; 402(1): 69-76, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20346904

RESUMO

The Homo sapiens and Arabidopsis thaliana genomes are believed to encode more than 500 and 1000 protein kinases, respectively. Despite this abundance, few bona fide kinase-client relationships have been described in detail. Here we describe a quantitative mass spectrometry (MS)-based approach for identifying kinase-client proteins. During method development, we used the dedicated kinase pyruvate dehydrogenase kinase (PDK) for the in vitro assays. As kinase substrate, we used synthetic peptide cocktails and, in the process, demonstrated that the assay is both sensitive and specific. The method is also useful for characterizing protein kinase-substrate kinetics once the peptide substrate is detected. Applying a label-free spectral counting method, the activity of PDK was determined using the peptide substrate YHGH(292)SMSDPGSTYR derived from the pyruvate dehydrogenase E1alpha subunit sequence. The utility of spectral counting was further validated by studying the negative effect of Met oxidation on peptide phosphorylation. We also measured the activity of the unrelated calcium-dependent protein kinase 3 (CPK3), demonstrating the utility of the method in protein kinase screening applications.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Peptídeos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Sequência de Aminoácidos , Peptídeos/química , Fosforilação , Piruvato Desidrogenase Quinase de Transferência de Acetil , Sensibilidade e Especificidade , Especificidade por Substrato
20.
Plant Physiol ; 147(4): 1936-46, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18567826

RESUMO

Mutation of either arginase structural gene (ARGAH1 or ARGAH2 encoding arginine [Arg] amidohydrolase-1 and -2, respectively) resulted in increased formation of lateral and adventitious roots in Arabidopsis (Arabidopsis thaliana) seedlings and increased nitric oxide (NO) accumulation and efflux, detected by the fluorogenic traps 3-amino,4-aminomethyl-2',7'-difluorofluorescein diacetate and diamino-rhodamine-4M, respectively. Upon seedling exposure to the synthetic auxin naphthaleneacetic acid, NO accumulation was differentially enhanced in argah1-1 and argah2-1 compared with the wild type. In all genotypes, much 3-amino,4-aminomethyl-2',7'-difluorofluorescein diacetate fluorescence originated from mitochondria. The arginases are both localized to the mitochondrial matrix and closely related. However, their expression levels and patterns differ: ARGAH1 encoded the minor activity, and ARGAH1-driven beta-glucuronidase (GUS) was expressed throughout the seedling; the ARGAH2::GUS expression pattern was more localized. Naphthaleneacetic acid increased seedling lateral root numbers (total lateral roots per primary root) in the mutants to twice the number in the wild type, consistent with increased internal NO leading to enhanced auxin signaling in roots. In agreement, argah1-1 and argah2-1 showed increased expression of the auxin-responsive reporter DR5::GUS in root tips, emerging lateral roots, and hypocotyls. We propose that Arg, or an Arg derivative, is a potential NO source and that reduced arginase activity in the mutants results in greater conversion of Arg to NO, thereby potentiating auxin action in roots. This model is supported by supplemental Arg induction of adventitious roots and increased NO accumulation in argah1-1 and argah2-1 versus the wild type.


Assuntos
Amidoidrolases/genética , Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Arginase/genética , Mutação , Óxido Nítrico/metabolismo , Transdução de Sinais/genética , Amidoidrolases/análise , Amidoidrolases/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/análise , Proteínas de Arabidopsis/metabolismo , Arginina/metabolismo , Células Cultivadas , Glucuronidase/análise , Ácidos Indolacéticos/metabolismo , Microscopia de Fluorescência , Mitocôndrias/enzimologia , Modelos Moleculares , Mutagênese Insercional , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes de Fusão/análise , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Espermina/metabolismo , Nicotiana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA