Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(44): 30428-30457, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37917371

RESUMO

The intermolecular interaction energies, including hydrogen bonds (H-bonds), of clusters of the ionic liquid ethylammonium nitrate (EAN) and 1-amino-1,2,3-triazole (1-AT) based deep eutectic propellants (DeEP) are examined. 1-AT is introduced as a neutral hydrogen bond donor (HBD) to EAN in order to form a eutectic mixture. The effective fragment potential (EFP) is used to examine the bonding interactions in the DeEP clusters. The resolution of the Identity (RI) approximated second order Møller-Plesset perturbation theory (RI-MP2) and coupled cluster theory (RI-CCSD(T)) are used to validate the EFP results. The EFP method predicts that there are significant polarization and charge transfer effects in the EAN:1-AT complexes, along with Coulombic, dispersion and exchange repulsion interactions. The EFP interaction energies are in good agreement with the RI-MP2 and RI-CCSD(T) results. The quasi-atomic orbital (QUAO) bonding and kinetic bond order (KBO) analyses are additionally used to develop a conceptual and semi-quantitative understanding of the H-bonding interactions as a function of the size of the system. The QUAO and KBO analyses suggest that the H-bonds in the examined clusters follow the characteristic hydrogen bonding three-center four electron interactions. The strongest H-bonding interactions between the (EAN)1:(1-AT)n and (EAN)2:(1-AT)n (n = 1-5) complexes are observed internally within EAN; that is, between the ethylammonium cation [EA]+ and the nitrate anion ([NO3]-). The weakest H-bonding interactions occur between [NO3]- and 1-AT. Consequently, the average strengths of the H-bonds within a given (EAN)x:(1-AT)n complex decrease as more 1-AT molecules are introduced into the EAN monomer and EAN dimer. The QUAO bonding analysis suggests that 1-AT in (EAN)x:(1-AT)n can act as both a HBD and a hydrogen bond acceptor simultaneously. It is observed that two 1-AT molecules can form H-bonds to each other. Although the KBOs that correspond to H-bonding interactions in [EA]+:1-AT, [NO3]-:1-AT and between two 1-AT molecules are weaker than the H-bonds in EAN, those weak H-bond networks with 1-AT could be important to form a stable DeEP.

2.
J Phys Chem A ; 127(8): 1874-1882, 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36791340

RESUMO

An ab initio quantum chemical approach for the modeling of propellant degradation is presented. Using state-of-the-art bonding analysis techniques and composite methods, a series of potential degradation reactions are devised for a sample hydroxyl-terminated-polybutadiene (HTPB) type solid fuel. By applying thermochemical procedures and isodesmic reactions, accurate thermochemical quantities are obtained using a modified G3 composite method based on the resolution of the identity. The calculated heats of formation for the different structures produced presents an ∼2 kcal/mol average error when compared against experimental values.

3.
J Chem Inf Model ; 61(9): 4400-4414, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34402301

RESUMO

Accurate force fields are necessary for predictive molecular simulations. However, developing force fields that accurately reproduce experimental properties is challenging. Here, we present a machine learning directed, multiobjective optimization workflow for force field parametrization that evaluates millions of prospective force field parameter sets while requiring only a small fraction of them to be tested with molecular simulations. We demonstrate the generality of the approach and identify multiple low-error parameter sets for two distinct test cases: simulations of hydrofluorocarbon (HFC) vapor-liquid equilibrium (VLE) and an ammonium perchlorate (AP) crystal phase. We discuss the challenges and implications of our force field optimization workflow.


Assuntos
Gases , Aprendizado de Máquina , Modelos Moleculares , Estudos Prospectivos , Termodinâmica
5.
J Chem Phys ; 149(24): 244502, 2018 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-30599705

RESUMO

The applicability of an atomistic Class II force field to capture the properties of the orthorhombic crystal phase of ammonium perchlorate was investigated. Structural and dynamical behaviors including density, lattice parameters, bulk modulus, infrared spectrum, and rotational dynamics were calculated from the trajectories of molecular dynamics (MD) simulations. Properties calculated from MD were compared to available experimental data over a range of temperatures, including those significantly higher than the parameterization temperature of 10 K.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA