Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Pharmaceuticals (Basel) ; 16(4)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37111388

RESUMO

Snake venom serine protease (SVSP) interferes with the regulation and control of important biological reactions in homeostasis and can be classified as an activator of the fibrinolytic system and platelet aggregation. Our group has recently isolated a new serine protease from Crotalus durissus terrificus total venom (Cdtsp-2). This protein exhibits edematogenic capacity and myotoxic activity. A Kunitz-like EcTI inhibitor protein with a molecular mass of 20 kDa was isolated from Enterolobium contortisiliquum and showed high trypsin inhibition. Thus, the objective of this work is to verify the possible inhibition of the pharmacological activities of Cdtsp-2 by the Kutinz-type inhibitor EcTI. To isolate Cdtsp-2 from total C. d. terrificus venom, we used three-step chromatographic HPLC. Using the mice paw edema model, we observed an edematogenic effect, myotoxicity and hepatotoxicity caused by Cdtsp-2. In vitro and in vivo experiments showed that the alterations in hemostasis caused by Cdtsp-2 are crucial for the development of marked hepatotoxicity and that EcTI significantly inhibits the enzymatic and pharmacological activities of Cdtsp-2. Kunitz-like inhibitor may be a viable alternative for the development of ancillary treatments against the biological activities of venoms.

2.
Biochem Pharmacol ; 182: 114230, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32979352

RESUMO

L-asparaginase (ASNase) from Escherichia coli (EcAII) is used in the treatment of acute lymphoblastic leukaemia (ALL). EcAII activity in vivo has been described to be influenced by the human lysosomal proteases asparaginyl endopeptidase (AEP) and cathepsin B (CTSB); these hydrolases cleave and could expose epitopes associated with the immune response against EcAII. In this work, we show that ASNase resistance to CTSB and/or AEP influences the formation of anti-ASNase antibodies, one of the main causes of hypersensitivity reactions in patients. Error-prone polymerase chain reaction was used to produce variants of EcAII more resistant to proteolytic cleavage by AEP and CTSB. The variants with enzymatic activity and cytotoxicity levels equivalent to or better than EcAII WT were submitted to in vivo assays. Only one of the mutants presented increased serum half-life, so resistance to these proteases is not the only feature involved in EcAII stability in vivo. Our results showed alteration of the phenotypic profile of B cells isolated after animal treatment with different protease-resistant proteoforms. Furthermore, mice that were exposed to the protease-resistant proteoforms presented lower anti-asparaginase antibodies production in vivo. Our data suggest that modulating resistance to lysosomal proteases can result in less immunogenic protein drugs.


Assuntos
Antineoplásicos/farmacologia , Asparaginase/farmacologia , Produtos Biológicos/farmacologia , Fenômenos Imunogenéticos/efeitos dos fármacos , Lisossomos/imunologia , Peptídeo Hidrolases/farmacologia , Sequência de Aminoácidos , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Asparaginase/química , Asparaginase/uso terapêutico , Produtos Biológicos/química , Produtos Biológicos/uso terapêutico , Bovinos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Galinhas , Relação Dose-Resposta a Droga , Escherichia coli , Feminino , Cavalos , Humanos , Fenômenos Imunogenéticos/fisiologia , Células Jurkat , Lisossomos/química , Camundongos , Camundongos Endogâmicos BALB C , Peptídeo Hidrolases/química , Peptídeo Hidrolases/uso terapêutico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/imunologia , Estrutura Secundária de Proteína
3.
Artigo em Inglês | MEDLINE | ID: mdl-30181736

RESUMO

BACKGROUND: Lipid metabolites play an important role in parasite differentiation and virulence. Studies have revealed that Leishmania sp. uses prostaglandins to evade innate barriers, thus enabling the parasites to survive inside immune cells. Despite the role of the enzyme Phospholipase A2 (PLA2) in prostaglandins production, few studies have investigated the role of parasite PLA2 during the interaction between L. (L.) amazonensis and the host (in vitro and in vivo) immune cells. METHODS: In the present work, the leishmanicidal effect of PLA2 inhibitors, methyl arachidonyl fluorophosphonate (MAFP), bromoenol lactone (BEL) and aristolochic acid (AA) were investigated in vitro (promastigote and intracellular amastigote forms of L. (L.) amazonensis) and during in vivo infection using BALB/c mice. RESULTS: The aforementioned inhibitors were deleterious to promastigote and amastigote forms of the L. (L.) amazonensis and were non-toxic to peritoneal macrophages from BALB/c mice. L. (L.) amazonensis-infected BALB/c mice treated with the inhibitor BEL presented decreased lesion size and skin parasitism; however, BEL treatment induced hepatotoxicity in BALB/c mice. CONCLUSIONS: Results presented herein suggested that PLA2 inhibitors altered L. (L.) amazonensis viability. In spite of liver toxicity, treatment with BEL was the most selective compound in vitro, as well in vivo, resulting in lower skin parasitism in the infected mice. These findings corroborate the role of PLA2 in parasite virulence and maintenance in vertebrate hosts, and suggest that molecules structurally related to BEL should be considered when planning compounds against Leishmania sp.

4.
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1484758

RESUMO

Background: Lipid metabolites play an important role in parasite differentiation and virulence. Studies have revealed that Leishmania sp. uses prostaglandins to evade innate barriers, thus enabling the parasites to survive inside immune cells. Despite the role of the enzyme Phospholipase A2 (PLA2) in prostaglandins production, few studies have investigated the role of parasite PLA2 during the interaction between L. (L.) amazonensis and the host (in vitro and in vivo) immune cells. Methods: In the present work, the leishmanicidal effect of PLA2 inhibitors, methyl arachidonyl fluorophosphonate (MAFP), bromoenol lactone (BEL) and aristolochic acid (AA) were investigated in vitro (promastigote and intracellular amastigote forms of L. (L.) amazonensis) and during in vivo infection using BALB/c mice. Results: The aforementioned inhibitors were deleterious to promastigote and amastigote forms of the L. (L.) amazonensis and were non-toxic to peritoneal macrophages from BALB/c mice. L. (L.) amazonensis-infected BALB/c mice treated with the inhibitor BEL presented decreased lesion size and skin parasitism; however, BEL treatment induced hepatotoxicity in BALB/c mice. Conclusions: Results presented herein suggested that PLA2 inhibitors altered L. (L.) amazonensis viability. In spite of liver toxicity, treatment with BEL was the most selective compound in vitro, as well in vivo, resulting in lower skin parasitism in the infected mice. These findings corroborate the role of PLA2 in parasite virulence and maintenance in vertebrate hosts, and suggest that molecules structurally related to BEL should be considered when planning compounds against Leishmania sp.


Assuntos
Animais , Camundongos Endogâmicos BALB C/imunologia , /uso terapêutico , Leishmania , Leishmaniose/tratamento farmacológico , Macrófagos
5.
J. venom. anim. toxins incl. trop. dis ; 24: 21, 2018. tab, graf, ilus
Artigo em Inglês | LILACS | ID: biblio-954855

RESUMO

Lipid metabolites play an important role in parasite differentiation and virulence. Studies have revealed that Leishmania sp. uses prostaglandins to evade innate barriers, thus enabling the parasites to survive inside immune cells. Despite the role of the enzyme Phospholipase A2 (PLA2) in prostaglandins production, few studies have investigated the role of parasite PLA2 during the interaction between L. (L.) amazonensis and the host (in vitro and in vivo) immune cells. Methods: In the present work, the leishmanicidal effect of PLA2 inhibitors, methyl arachidonyl fluorophosphonate (MAFP), bromoenol lactone (BEL) and aristolochic acid (AA) were investigated in vitro (promastigote and intracellular amastigote forms of L. (L.) amazonensis) and during in vivo infection using BALB/c mice. Results: The aforementioned inhibitors were deleterious to promastigote and amastigote forms of the L. (L.) amazonensis and were non-toxic to peritoneal macrophages from BALB/c mice. L. (L.) amazonensis-infected BALB/c mice treated with the inhibitor BEL presented decreased lesion size and skin parasitism; however, BEL treatment induced hepatotoxicity in BALB/c mice. Conclusions: Results presented herein suggested that PLA2 inhibitors altered L. (L.) amazonensis viability. In spite of liver toxicity, treatment with BEL was the most selective compound in vitro, as well in vivo, resulting in lower skin parasitism in the infected mice. These findings corroborate the role of PLA2 in parasite virulence and maintenance in vertebrate hosts, and suggest that molecules structurally related to BEL should be considered when planning compounds against Leishmania sp.(AU)


Assuntos
Animais , Masculino , Ratos , Inibidores de Fosfolipase A2/farmacologia , Leishmania/efeitos dos fármacos , Leishmania/parasitologia , Técnicas In Vitro , Macrófagos Peritoneais/efeitos dos fármacos , Lactonas/antagonistas & inibidores , Camundongos Endogâmicos BALB C
6.
Int J Mol Sci ; 18(9)2017 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-28906474

RESUMO

Compound 8-C-rhamnosyl apigenin (8CR) induced a moderate reduction in the enzymatic activity of secretory phospholipase A2 (sPLA2) from Crotalus durissus terrificus and cytosolic phospholipase A2 (cPLA2), but the compound also significantly inhibited the enzymatic activity of the enzyme cyclooxygenase. In vitro assays showed that the compound induced a slight change in the secondary structure of sPLA2 from Crotalus durissus terrificus snake venom. In vivo assays were divided into two steps. In the first step, the 8CR compound was administered by intraperitoneal injections 30 min prior to administration of sPLA2. In this condition, 8CR inhibited edema and myonecrosis induced by the sPLA2 activity of Crotalus durissus terrificus in a dose-dependent manner by decreasing interleukin-1ß (IL-1ß), tumor necrosis factor α (TNF-α), prostaglandin E2 (PGE2), and lipid peroxidation. This has been demonstrated by monitoring the levels of malondialdehyde (MDA) in rat paws after the course of edema induced by sPLA2. These results, for the first time, show that sPLA2 of Crotalus durissus terrificus venom induces massive muscle damage, as well as significant edema by mobilization of cyclooxygenase enzymes. Additionally, its pharmacological activity involves increased lipid peroxidation as well as TNF-α and IL-1ß production. Previous administration by the peritoneal route has shown that dose-dependent 8CR significantly decreases the enzymatic activity of cyclooxygenase enzymes. This resulted in a decrease of the amount of bioactive lipids involved in inflammation; it also promoted a significant cellular protection against lipid peroxidation. In vivo experiments performed with 8CR at a concentration adjusted to 200 µg (8 mg/kg) of intraperitoneal injection 15 min after sPLA2 injection significantly reduced sPLA2 edema and the myotoxic effect induced by sPLA2 through the decrease in the enzymatic activity of cPLA2, cyclooxygenase, and a massive reduction of lipid peroxidation. These results clearly show that 8CR is a potent anti-inflammatory that inhibits cyclooxygenase-2 (COX-2), and it may modulate the enzymatic activity of sPLA2 and cPLA2. In addition, it was shown that Crotalus durissus terrificus sPLA2 increases cell oxidative stress during edema and myonecrosis, and the antioxidant properties of the polyphenolic compound may be significant in mitigating the pharmacological effect induced by sPLA2 and other snake venom toxins.


Assuntos
Apigenina/farmacologia , Edema/tratamento farmacológico , Peperomia/química , Extratos Vegetais/farmacologia , Doença Aguda , Animais , Apigenina/química , Biomarcadores , Ciclo-Oxigenase 2/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Edema/etiologia , Edema/metabolismo , Edema/patologia , Mediadores da Inflamação/metabolismo , Estrutura Molecular , Fosfolipases A2 Secretórias/metabolismo , Extratos Vegetais/química , Ratos
7.
Toxicon ; 138: 78-81, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28837825

RESUMO

Sea anemones contain a variety of interesting biologically active compounds, including some potent toxins. PLA2 from Bunodosoma caissarum, a sea anemone endemic in the Brazilian southern coast, has shown renal alterations on isolated kidney. The aim of this study was to evaluate the renal and vascular effects of B. caissarum crude extract (BcE) on isolated perfused kidney and arteriolar mesenteric bed, as well the involvement of prostaglandins and endothelin. BcE did not show any effect on arteriolar mesenteric bed, but increased perfusion pressure, renal vascular resistance, urinary flow, glomerular filtration rate and decreased the percentage of sodium tubular transport on isolated perfused kidney. Indomethacin blocked the renal effects induced by BcE and tezosentan only partially blocked these effects. These results demonstrate the effects of BcE on kidney in situ, suggesting the involvement of prostaglandins and endothelin.


Assuntos
Venenos de Cnidários/toxicidade , Rim/efeitos dos fármacos , Anêmonas-do-Mar/química , Animais , Endotelinas , Taxa de Filtração Glomerular/efeitos dos fármacos , Indometacina/farmacologia , Masculino , Artérias Mesentéricas/efeitos dos fármacos , Prostaglandinas , Piridinas/farmacologia , Ratos Wistar , Tetrazóis/farmacologia , Resistência Vascular/efeitos dos fármacos
8.
Sci Rep ; 6: 33133, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27629822

RESUMO

Typical 2-Cys Peroxiredoxins (2-Cys Prxs) reduce hydroperoxides with extraordinary rates due to an active site composed of a catalytic triad, containing a peroxidatic cysteine (CP), an Arg, and a Thr (or Ser). 2-Cys Prx are involved in processes such as cancer; neurodegeneration and host-pathogen interactions. During catalysis, 2-Cys Prxs switch between decamers and dimers. Analysis of 2-Cys Prx structures in the fully folded (but not locally unfolded) form revealed a highly conserved, non-conventional hydrogen bond (CH-π) between the catalytic triad Thr of a dimer with an aromatic residue of an adjacent dimer. In contrast, structures of 2-Cys Prxs with a Ser in place of the Thr do not display this CH-π bond. Chromatographic and structural data indicate that the Thr (but not Ser) destabilizes the decamer structure in the oxidized state probably through steric hindrance. As a general trend, mutations in a yeast 2-Cys Prx (Tsa1) favoring the dimeric state also displayed a decreased catalytic activity. Remarkably, yeast naturally contains Thr-Ser variants (Tsa1 and Tsa2, respectively) with distinct oligomeric stabilities in their disulfide states.

9.
PLoS One ; 11(3): e0151029, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26974665

RESUMO

Viperidae venom has several local and systemic effects, such as pain, edema, inflammation, kidney failure and coagulopathy. Additionally, bothropic venom and its isolated components directly interfere on cellular metabolism, causing alterations such as cell death and proliferation. Inflammatory cells are particularly involved in pathological envenomation mechanisms due to their capacity of releasing many mediators, such as nitric oxide (NO). NO has many effects on cell viability and it is associated to the development of inflammation and tissue damage caused by Bothrops and Bothropoides venom. Bothropoides insularis is a snake found only in Queimada Grande Island, which has markedly toxic venom. Thus, the aim of this work was to evaluate the biological effects of Bothropoides insularis venom (BiV) on RAW 264.7 cells and assess NO involvement. The venom was submitted to colorimetric assays to identify the presence of some enzymatic components. We observed that BiV induced H2O2 production and showed proteolytic and phospholipasic activities. RAW 264.7 murine macrophages were incubated with different concentrations of BiV and then cell viability was assessed by MTT reduction assay after 2, 6, 12 and 24 hours of incubation. A time- and concentration-dependent effect was observed, with a tendency to cell proliferation at lower BiV concentrations and cell death at higher concentrations. The cytotoxic effect was confirmed after lactate dehydrogenase (LDH) measurement in the supernatant from the experimental groups. Flow cytometry analyses revealed that necrosis is the main cell death pathway caused by BiV. Also, BiV induced NO release. The inhibition of both proliferative and cytotoxic effects with L-NAME were demonstrated, indicating that NO is important for these effects. Finally, BiV induced an increase in iNOS expression. Altogether, these results demonstrate that B. insularis venom have proliferative and cytotoxic effects on macrophages, with necrosis participation. We also suggest that BiV acts by inducing iNOS expression and causing NO release.


Assuntos
Venenos de Crotalídeos/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Macrófagos/metabolismo , Óxido Nítrico Sintase Tipo II/biossíntese , Óxido Nítrico/biossíntese , Viperidae , Animais , Linhagem Celular , Peróxido de Hidrogênio/metabolismo , Camundongos , NG-Nitroarginina Metil Éster/farmacologia , Fatores de Tempo
10.
Toxicon ; 108: 126-33, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26410111

RESUMO

Snake envenomation (Bothrops genus) is common in tropical countries and acute kidney injury is one of the complications observed in Bothrops snakebite with relevant morbidity and mortality. Here, we showed that Bothropoides pauloensis venom (BpV) decreased cell viability (IC50 of 7.5 µg/mL). Flow cytometry with annexin V and propidium iodide showed that cell death occurred predominantly by apoptosis and late apoptosis, through caspases 3 and 7 activation, mitochondrial membrane potential collapse and ROS overproduction. BpV reduced perfusion pressure, renal vascular resistance, urinary flow, glomerular filtration rate, percentage of sodium, chloride or potassium tubular transportation. These findings demonstrated that BpV cytotoxicity on renal epithelial cells might be responsible for the nephrotoxicity observed in isolated kidney.


Assuntos
Bothrops , Venenos de Crotalídeos/toxicidade , Túbulos Renais/efeitos dos fármacos , Rim/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Caspase 7/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Cães , Células Epiteliais/efeitos dos fármacos , Citometria de Fluxo , Taxa de Filtração Glomerular/efeitos dos fármacos , Técnicas In Vitro , Células Madin Darby de Rim Canino , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Testes de Toxicidade , Resistência Vascular/efeitos dos fármacos
11.
PLoS One ; 10(7): e0132569, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26193352

RESUMO

Acute renal failure is a common complication caused by Bothrops viper envenomation. In this study, the nefrotoxicity of a main component of B. leucurus venom called L-aminoacid oxidase (LAAO-Bl) was evaluated by using tubular epithelial cell lines MDCK and HK-2 and perfused kidney from rats. LAAO-Bl exhibited cytotoxicity, inducing apoptosis and necrosis in MDCK and HK-2 cell lines in a concentration-dependent manner. MDCK apoptosis induction was accompanied by Ca2+ release from the endoplasmic reticulum, reactive oxygen species (ROS) generation and mitochondrial dysfunction with enhanced expression of Bax protein levels. LAAO-Bl induced caspase-3 and caspase-7 activation in both cell lines. LAAO-Bl (10 µg/mL) exerts significant effects on the isolated kidney perfusion increasing perfusion pressure and urinary flow and decreasing the glomerular filtration rate and sodium, potassium and chloride tubular transport. Taken together our results suggest that LAAO-Bl is responsible for the nephrotoxicity observed in the envenomation by snakebites. Moreover, the cytotoxic of LAAO-Bl to renal epithelial cells might be responsible, at least in part, for the nephrotoxicity observed in isolated kidney.


Assuntos
Injúria Renal Aguda/induzido quimicamente , Apoptose/efeitos dos fármacos , Bothrops , Venenos de Crotalídeos/farmacologia , Rim/efeitos dos fármacos , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Animais , Caspase 3/metabolismo , Caspase 7/metabolismo , Linhagem Celular , Rim/metabolismo , Rim/patologia , Necrose/metabolismo , Necrose/patologia , Ratos , Espécies Reativas de Oxigênio/metabolismo
12.
Biomed Res Int ; 2014: 726585, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25258715

RESUMO

The aim of this paper was to investigate the effect of chlorogenic acid (5-caffeoylquinic acid, 5CQA), isolated from Baccharis oxyodonta, on the structure and pharmacological effect of secretory phospholipase A2 (sPLA2) from Crotalus durissus terrificus. All in vitro and in vivo experiments were conducted using a purified sPLA2 compared under the same experimental conditions with sPLA2 : 5CQA. 5CQA induced several discrete modifications in the secondary structure and the hydrophobic characteristics of native sPLA2 that induced slight changes in the α-helical content, increase in the random coil structure, and decrease of fluorescence of native sPLA2. Moreover, 5CQA significantly decreased the enzymatic activity and the oedema and myonecrosis induced by native sPLA2. As the catalytic activity of sPLA2 plays an important role in several of its biological and pharmacological properties, antibacterial activity was used to confirm the decrease in its enzymatic activity by 5CQA, which induced massive bacterial cell destruction. We found that 5CQA specifically abolished the enzymatic activity of sPLA2 and induced discrete protein unfolding that mainly involved the pharmacological site of sPLA2. These results showed the potential application of 5CQA in the snake poisoning treatment and modulation of the pathological effect of inflammation induced by secretory PLA2.


Assuntos
Baccharis/química , Ácido Clorogênico/isolamento & purificação , Ácido Clorogênico/farmacologia , Crotalus/metabolismo , Fosfolipases A2 Secretórias/química , Fosfolipases A2 Secretórias/farmacologia , Animais , Anti-Infecciosos/farmacologia , Ácido Clorogênico/química , Ácido Clorogênico/uso terapêutico , Dicroísmo Circular , Edema/tratamento farmacológico , Edema/patologia , Masculino , Camundongos , Testes de Sensibilidade Microbiana , Fosfolipases A2 Secretórias/isolamento & purificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
13.
Toxicon ; 88: 107-14, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24874890

RESUMO

Bothropoides insularis (jararaca-ilhoa) is a native endemic snake limited to the specific region of Queimada Island, on São Paulo coast. Several local and systemic effects have been described due to envenomation caused by it, such as edema, tissue necrosis, hemorrhage and acute renal failure. Our previous studies have shown that Bothropoides insularis venom (BinsV) demonstrated important functional and morphologic alterations in rat isolated kidney, especially decrease in tubular electrolyte transport, osmotic clearance and tubular necrosis. In order to elucidate the direct nephrotoxicity mechanism, the aim of the present study was to investigate BinsV cytotoxicity effect on renal epithelial cells. The treatment with BinsV over MDCK culture decreased cell viability in all concentrations tested with IC50 of 9 µg/mL. BinsV was able to induce membrane rupture and cell death with phosphatidilserine externalization. Furthermore, BinsV induced ROS overproduction and mitochondrial membrane potential collapse, as well as Bax translocation and caspases 3 and 7 expression. Therefore, these events might be responsible by BinsV-induced cell death caused by mitochondrial dysfunction and ROS overproduction in the direct cytotoxicity process.


Assuntos
Bothrops , Venenos de Crotalídeos/toxicidade , Túbulos Renais/efeitos dos fármacos , Animais , Caspases/metabolismo , Cães , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Túbulos Renais/patologia , Células Madin Darby de Rim Canino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Necrose , Espécies Reativas de Oxigênio/metabolismo
14.
Phytochemistry ; 96: 457-64, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24075572

RESUMO

From the leaves of Solanum campaniforme (Solanaceae), eight solanidane alkaloids were isolated, four of which contain a p-hydroxyphenylethylamine unit. Their structures were established as: 22ß,23ß-epoxy-solanida-1,4-dien-3-one; 22α,23α-epoxy-10-epi-solanida-1,4,9-trien-3-one; 22α,23α-epoxy-solanida-4-en-3-one; 22ß,23ß-epoxy-solanida-4-en-3-one; (E)-N-[8'(4-hydroxyphenyl)ethyl]-22α,23α-epoxy-solanida-1,4,9-trien-3-imine; (E)-N-[8'(4-hydroxyphenyl)ethyl]-22α,23α-epoxy-solanida-1,4-dien-3-imine; (Z)-N-[8'(4-hydroxyphenyl)ethyl]-22α,23α-epoxy-solanida-1,4,9-trien-3-imine and (Z)-N-[8'(4-hydroxyphenyl)ethyl]-22α,23α-epoxy-solanida-1,4-dien-3-imine. All structures were determined using spectroscopic techniques, such as 1D and 2D NMR, and HRESIMS. The cytotoxicity and the antiophidic activities of the alkaloids were evaluated. The alkaloids did not show any cytotoxicity, but inhibited the main toxic actions of Bothrops pauloensis venom.


Assuntos
Alcaloides/isolamento & purificação , Solanum/química , Alcaloides/química , Alcaloides/farmacologia , Brasil , Venenos de Crotalídeos/antagonistas & inibidores , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Folhas de Planta/química , Estereoisomerismo
15.
J Venom Anim Toxins Incl Trop Dis ; 19(1): 24, 2013 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-24066982

RESUMO

BACKGROUND: Apis mellifera stings are a problem for public health worldwide, particularly in Latin America due to the aggressiveness of its Africanized honeybees. Massive poisoning by A. mellifera venom (AmV) affects mainly the cardiovascular system, and several works have described its actions on heart muscle. Nevertheless, no work on the pharmacological action mechanisms of the AmV in isolated aorta has been reported. Thus, the present work aimed to investigate the actions of AmV and its main fractions, phospholipase A2 (PLA2) and melittin, on isolated aorta rings and a probable action mechanism. RESULTS: AmV and the complex PLA2 + melittin (0.1-50 µg/mL) caused contraction in endothelium-containing aorta rings, but neither isolated PLA2 nor melittin were able to reproduce the effect. Endothelium removal did not change the maximum vasoconstrictor effect elicited by AmV. Ca2+-free medium, as well as treatment with phentolamine (5 µM), verapamil (10 µM), losartan (100 µM), and U-73122 (10 µM, a phospholipase C inhibitor), eliminated the AmV-induced contractile effects. CONCLUSIONS: In conclusion, AmV caused contractile effect in aorta rings probably through the involvement of voltage-operated calcium channels, AT1 and α-adrenergic receptors via the downstream activation of phospholipase C. The protein complex, PLA2 + melittin, was also able to induce vasoconstriction, whereas the isolated proteins were not.

16.
Toxicon ; 74: 19-26, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23911732

RESUMO

Mammalian natriuretic peptides (NPs) have been extensively investigated for use as therapeutic agents in the treatment of cardiovascular diseases. Here, we describe the isolation, sequencing and tridimensional homology modeling of the first C-type natriuretic peptide isolated from scorpion venom. In addition, its effects on the renal function of rats and on the mRNA expression of natriuretic peptide receptors in the kidneys are delineated. Fractionation of Tityus serrulatus venom using chromatographic techniques yielded a peptide with a molecular mass of 2190.64 Da, which exhibited the pattern of disulfide bridges that is characteristic of a C-type NP (TsNP, T. serrulatus Natriuretic Peptide). In the isolated perfused rat kidney assay, treatment with two concentrations of TsNP (0.03 and 0.1 µg/mL) increased the perfusion pressure, glomerular filtration rate and urinary flow. After 60 min of treatment at both concentrations, the percentages of sodium, potassium and chloride transport were decreased, and the urinary cGMP concentration was elevated. Natriuretic peptide receptor-A (NPR-A) mRNA expression was down regulated in the kidneys treated with both concentrations of TsNP, whereas NPR-B, NPR-C and CG-C mRNAs were up regulated at the 0.1 µg/mL concentration. In conclusion, this work describes the isolation and modeling of the first natriuretic peptide isolated from scorpion venom. In addition, examinations of the renal actions of TsNP indicate that its effects may be related to the activation of NPR-B, NPR-C and GC-C.


Assuntos
Rim/efeitos dos fármacos , Peptídeo Natriurético Tipo C/isolamento & purificação , Venenos de Escorpião/isolamento & purificação , Escorpiões/química , Sequência de Aminoácidos , Animais , Brasil , GMP Cíclico/genética , GMP Cíclico/metabolismo , Regulação para Baixo , Taxa de Filtração Glomerular , Rim/metabolismo , Masculino , Dados de Sequência Molecular , Peptídeo Natriurético Tipo C/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptores do Fator Natriurético Atrial/genética , Receptores do Fator Natriurético Atrial/metabolismo , Venenos de Escorpião/química , Alinhamento de Sequência , Regulação para Cima
17.
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-954706

RESUMO

Background : Apis mellifera stings are a problem for public health worldwide, particularly in Latin America due to the aggressiveness of its Africanized honeybees. Massive poisoning by A. mellifera venom (AmV) affects mainly the cardiovascular system, and several works have described its actions on heart muscle. Nevertheless, no work on the pharmacological action mechanisms of the AmV in isolated aorta has been reported. Thus, the present work aimed to investigate the actions of AmV and its main fractions, phospholipase A2 (PLA2) and melittin, on isolated aorta rings and a probable action mechanism. Results : AmV and the complex PLA2 + melittin (0.1-50 μg/mL) caused contraction in endothelium-containing aorta rings, but neither isolated PLA2 nor melittin were able to reproduce the effect. Endothelium removal did not change the maximum vasoconstrictor effect elicited by AmV. Ca2+-free medium, as well as treatment with phentolamine (5 μM), verapamil (10 μM), losartan (100 μM), and U-73122 (10 μM, a phospholipase C inhibitor), eliminated the AmV-induced contractile effects. Conclusions : In conclusion, AmV caused contractile effect in aorta rings probably through the involvement of voltage-operated calcium channels, AT1 and α-adrenergic receptors via the downstream activation of phospholipase C. The protein complex, PLA2 + melittin, was also able to induce vasoconstriction, whereas the isolated proteins were not.(AU)


Assuntos
Animais , Ratos , Vasoconstritores , Abelhas , Sistema Cardiovascular , Fosfolipases A2 , Mordeduras e Picadas
18.
Artigo em Inglês | LILACS-Express | LILACS, VETINDEX | ID: biblio-1484546

RESUMO

Background : Apis mellifera stings are a problem for public health worldwide, particularly in Latin America due to the aggressiveness of its Africanized honeybees. Massive poisoning by A. mellifera venom (AmV) affects mainly the cardiovascular system, and several works have described its actions on heart muscle. Nevertheless, no work on the pharmacological action mechanisms of the AmV in isolated aorta has been reported. Thus, the present work aimed to investigate the actions of AmV and its main fractions, phospholipase A2 (PLA2) and melittin, on isolated aorta rings and a probable action mechanism. Results : AmV and the complex PLA2 + melittin (0.1-50 g/mL) caused contraction in endothelium-containing aorta rings, but neither isolated PLA2 nor melittin were able to reproduce the effect. Endothelium removal did not change the maximum vasoconstrictor effect elicited by AmV. Ca2+-free medium, as well as treatment with phentolamine (5 M), verapamil (10 M), losartan (100 M), and U-73122 (10 M, a phospholipase C inhibitor), eliminated the AmV-induced contractile effects. Conclusions : In conclusion, AmV caused contractile effect in aorta rings probably through the involvement of voltage-operated calcium channels, AT1 and -adrenergic receptors via the downstream activation of phospholipase C. The protein complex, PLA2 + melittin, was also able to induce vasoconstriction, whereas the isolated proteins were not.

19.
Artigo em Inglês | MEDLINE | ID: mdl-22899963

RESUMO

Secretory phospholipases A(2) (sPLA(2)) exert proinflammatory actions through lipid mediators. These enzymes have been found to be elevated in many inflammatory disorders such as rheumatoid arthritis, sepsis, and atherosclerosis. The aim of this study was to evaluate the effect of harpalycin 2 (Har2), an isoflavone isolated from Harpalyce brasiliana Benth., in the enzymatic, edematogenic, and myotoxic activities of sPLA(2) from Bothrops pirajai, Crotalus durissus terrificus, Apis mellifera, and Naja naja venoms. Har2 inhibits all sPLA(2) tested. PrTX-III (B. pirajai venom) was inhibited at about 58.7%, Cdt F15 (C. d. terrificus venom) at 78.8%, Apis (from bee venom) at 87.7%, and Naja (N. naja venom) at 88.1%. Edema induced by exogenous sPLA(2) administration performed in mice paws showed significant inhibition by Har2 at the initial step. In addition, Har2 also inhibited the myotoxic activity of these sPLA(2)s. In order to understand how Har2 interacts with these enzymes, docking calculations were made, indicating that the residues His48 and Asp49 in the active site of these enzymes interacted powerfully with Har2 through hydrogen bonds. These data pointed to a possible anti-inflammatory activity of Har2 through sPLA(2) inhibition.

20.
BMC Complement Altern Med ; 12: 139, 2012 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-22925825

RESUMO

BACKGROUND: Harpalycin 2 (HP-2) is an isoflavone isolated from the leaves of Harpalyce brasiliana Benth., a snakeroot found in northeast region of Brazil and used in folk medicine to treat snakebite. Its leaves are said to be anti-inflammatory. Secretory phospholipases A2 are important toxins found in snake venom and are structurally related to those found in inflammatory conditions in mammals, as in arthritis and atherosclerosis, and for this reason can be valuable tools for searching new anti-phospholipase A2 drugs. METHODS: HP-2 and piratoxin-III (PrTX-III) were purified through chromatographic techniques. The effect of HP-2 in the enzymatic activity of PrTX-III was carried out using 4-nitro-3-octanoyloxy-benzoic acid as the substrate. PrTX-III induced platelet aggregation was inhibited by HP-2 when compared to aristolochic acid and p-bromophenacyl bromide (p-BPB). In an attempt to elucidate how HP-2 interacts with PrTX-III, mass spectrometry, circular dichroism and intrinsic fluorescence analysis were performed. Docking scores of the ligands (HP-2, aristolochic acid and p-BPB) using PrTX-III as target were also calculated. RESULTS: HP-2 inhibited the enzymatic activity of PrTX-III (IC50 11.34 ± 0.28 µg/mL) although it did not form a stable chemical complex in the active site, since mass spectrometry measurements showed no difference between native (13,837.34 Da) and HP-2 treated PrTX-III (13,856.12 Da). A structural analysis of PrTX-III after treatment with HP-2 showed a decrease in dimerization and a slight protein unfolding. In the platelet aggregation assay, HP-2 previously incubated with PrTX-III inhibited the aggregation when compared with untreated protein. PrTX-III chemical treated with aristolochic acid and p-BPB, two standard PLA2 inhibitors, showed low inhibitory effects when compared with the HP-2 treatment. Docking scores corroborated these results, showing higher affinity of HP-2 for the PrTX-III target (PDB code: 1GMZ) than aristolochic acid and p-BPB. HP-2 previous incubated with the platelets inhibits the aggregation induced by untreated PrTX-III as well as arachidonic acid. CONCLUSION: HP-2 changes the structure of PrTX-III, inhibiting the enzymatic activity of this enzyme. In addition, PrTX-III platelet aggregant activity was inhibited by treatment with HP-2, p-BPB and aristolochic acid, and these results were corroborated by docking scores.


Assuntos
Benzodioxóis/farmacologia , Bothrops , Venenos de Crotalídeos/enzimologia , Inibidores Enzimáticos/farmacologia , Fabaceae/química , Fosfolipases A2 do Grupo II/antagonistas & inibidores , Isoflavonas/farmacologia , Agregação Plaquetária/efeitos dos fármacos , Acetofenonas/farmacologia , Animais , Ácidos Aristolóquicos/farmacologia , Benzodioxóis/isolamento & purificação , Benzodioxóis/uso terapêutico , Brasil , Inibidores Enzimáticos/isolamento & purificação , Inibidores Enzimáticos/uso terapêutico , Fosfolipases A2 do Grupo II/química , Humanos , Isoflavonas/isolamento & purificação , Isoflavonas/uso terapêutico , Nitrobenzoatos/metabolismo , Fitoterapia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Folhas de Planta , Proteínas de Répteis/antagonistas & inibidores , Proteínas de Répteis/química , Mordeduras de Serpentes/tratamento farmacológico , Mordeduras de Serpentes/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA