RESUMO
INTRODUCTION: Prostate cancer continues to be a major cause of morbidity and mortality for men worldwide. Enzalutamide, a second-generation non-steroidal antiandrogen that blocks androgen receptor (AR) transcriptional activity, is a treatment for biochemically recurrent, metastatic, castration-sensitive, and castration-resistant tumors. Unfortunately, most patients ultimately develop resistance to enzalutamide, making long-term treatment with this agent challenging. AREAS COVERED: We performed a literature search of PubMed without date restrictions to investigate the literature surrounding enzalutamide and discuss the current uses of enzalutamide, proposed mechanisms driving resistance, and summarize current efforts to mitigate this resistance. EXPERT OPINION: Enzalutamide is an effective prostate cancer therapy that is currently used in biochemically recurrent and metastatic disease and for both castration-sensitive and castration-resistant tumors. Unfortunately, resistance to enzalutamide occurs in each of these scenarios. In the clinical setting, enzalutamide-resistant tumors are either AR-driven or AR-indifferent. AR-dependent resistance mechanisms include genomic or epigenomic events that result in enhanced AR signaling. Tumors that do not require AR signaling instead may depend on alternative oncogenic pathways. There are numerous strategies to mitigate enzalutamide resistance, including concurrent use of PARP inhibitors or immune therapies. Additional work is required to uncover novel approaches to treat patients in the enzalutamide-resistant setting.
Assuntos
Benzamidas , Resistencia a Medicamentos Antineoplásicos , Nitrilas , Feniltioidantoína , Neoplasias de Próstata Resistentes à Castração , Receptores Androgênicos , Humanos , Feniltioidantoína/farmacologia , Feniltioidantoína/análogos & derivados , Feniltioidantoína/administração & dosagem , Masculino , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/patologia , Neoplasias de Próstata Resistentes à Castração/genética , Receptores Androgênicos/metabolismo , Receptores Androgênicos/genética , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Animais , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Antagonistas de Androgênios/farmacologia , Antagonistas de Androgênios/administração & dosagem , Antagonistas de Receptores de Andrógenos/farmacologia , Antagonistas de Receptores de Andrógenos/administração & dosagem , Recidiva Local de Neoplasia/tratamento farmacológicoRESUMO
BACKGROUNDProstate cancer (PC) is driven by aberrant signaling of the androgen receptor (AR) or its ligands, and androgen deprivation therapies (ADTs) are a cornerstone of treatment. ADT responsiveness may be associated with germline changes in genes that regulate androgen production, uptake, and conversion (APUC).METHODSWe analyzed whole-exome sequencing (WES) and whole-transcriptome sequencing (WTS) data from prostate tissues (SU2C/PCF, TCGA, GETx). We also interrogated the Caris Precision Oncology Alliance (POA) DNA (592-gene/whole exome) and RNA (whole transcriptome) next-generation sequencing databases. Algorithm for Linking Activity Networks (ALAN) was used to quantify all pairwise gene-to-gene associations. Real-world overall survival was determined from insurance claims data using Kaplan-Meier estimates.RESULTSSix APUC genes (HSD3B1, HSD3B2, CYP3A43, CYP11A1, CYP11B1, CYP17A1) exhibited coalescent gene behavior in a cohort of metastatic tumors (n = 208). In the Caris POA dataset, the 6 APUC genes (APUC-6) exhibited robust clustering in primary prostate (n = 4,490) and metastatic (n = 2,593) biopsies. Surprisingly, tumors with elevated APUC-6 expression had statically lower expression of AR, AR-V7, and AR signaling scores, suggesting ligand-driven disease biology. APUC-6 genes instead associated with the expression of alternative steroid hormone receptors, ESR1/2 and PGR. We used RNA expression of AR or APUC-6 genes to define 2 subgroups of tumors with differential association with hallmark pathways and cell surface targets.CONCLUSIONSThe APUC-6-high/AR-low tumors represented a subgroup of patients with good clinical outcomes, in contrast with the AR-high or neuroendocrine PCs. Altogether, measuring the aggregate expression of APUC-6 genes in current genomic tests identifies PCs that are ligand (rather than AR) driven and require distinct therapeutic strategies.FUNDINGNCI/NIH 1R37CA288972-01, NCI Cancer Center Support P30 CA077598, DOD W81XWH-22-2-0025, R01 CA249279.
Assuntos
Androgênios , Neoplasias da Próstata , Humanos , Masculino , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Androgênios/metabolismo , Androgênios/genética , Antagonistas de Androgênios/uso terapêutico , Sequenciamento do Exoma , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Idoso , TranscriptomaRESUMO
Activating mutations in the mitogen-activated protein kinase (MAPK) pathway represent driver alterations governing tumorigenesis, metastasis, and therapy resistance. MAPK activation predominantly occurs through genomic alterations in RAS and BRAF. BRAF is an effector kinase that functions downstream of RAS and propagates this oncogenic activity through MEK and ERK. Across cancers, BRAF alterations include gain-of-function mutations, copy-number alterations, and structural rearrangements. In cancer patients, BRAF-targeting precision therapeutics are effective against Class I BRAF alterations (p.V600 hotspot mutations) in tumors such as melanomas, thyroid cancers, and colorectal cancers. However, numerous non-Class I BRAF inhibitors are also in development and have been explored in some cancers. Here we discuss the diverse forms of BRAF alterations found in human cancers and the strategies to inhibit them in patients harboring cancers of distinct origins.
Assuntos
Terapia de Alvo Molecular , Neoplasias , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas B-raf , Humanos , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/metabolismo , Neoplasias/genética , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Mutação , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Animais , Sistema de Sinalização das MAP Quinases/genéticaRESUMO
PURPOSE: Alterations in BRAF have been reported in 3% to 5% of prostate cancer, although further characterization is lacking. Here, we describe the nature of BRAF alterations in prostate cancer using a large cohort from commercially available tissue and liquid biopsies subjected to comprehensive genomic profiling (CGP). EXPERIMENTAL DESIGN: Tissue and liquid biopsies from patients with prostate cancer were profiled using FoundationOne CDx and FoundationOne Liquid CDx CGP assays, respectively. Tissue biopsies from non-prostate cancer types were used for comparison (n = 275,151). Genetic ancestry was predicted using a single-nucleotide polymorphism (SNP) based approach. RESULTS: Among 15,864 tissue biopsies, BRAF-activating alterations were detected in 520 cases (3.3%). The majority (463 samples, 2.9%) harbored class II alterations, including BRAF rearrangements (243 samples, 1.5%), K601E (101 samples, 0.6%), and G469A (58 samples, 0.4%). BRAF-altered prostate cancers were enriched for CDK12 mutations (OR, 1.87; 9.2% vs. 5.2%; P = 0.018), but depleted in TMPRSS2 fusions (OR, 0.25; 11% vs. 32%; P < 0.0001), PTEN alterations (OR, 0.47; 17% vs. 31%; P < 0.0001), and APC alterations (OR, 0.48; 4.4% vs. 8.9%; P = 0.018) relative to BRAF wild-type (WT) disease. Compared with patients of European ancestry, BRAF alterations were more common in tumors from patients of African ancestry (5.1% vs. 2.9%, P < 0.0001) and Asian ancestry (6.0% vs. 2.9%, P < 0.001). CONCLUSIONS: Activating BRAF alterations were detected in approximately 3% of prostate cancers, and most were class II mutations and rearrangements; BRAF V600 mutations were exceedingly rare. These findings suggest that BRAF activation in prostate cancer is unique from other cancers and supports further clinical investigation of therapeutics targeting the mitogen-activated protein kinase (MAPK) pathway.
Assuntos
Neoplasias da Próstata , Proteínas Proto-Oncogênicas B-raf , Masculino , Humanos , Proteínas Proto-Oncogênicas B-raf/genética , Neoplasias da Próstata/genética , MutaçãoRESUMO
PURPOSE: In patients with metastatic prostate cancer (mPC), ATM and BRCA2 mutations dictate differences in PARPi inhibitor response and other therapies. We interrogated the molecular features of ATM- and BRCA2-mutated mPC to explain the divergent clinical outcomes and inform future treatment decisions. EXPERIMENTAL DESIGN: We examined a novel set of 1,187 mPCs after excluding microsatellite-instable (MSI) tumors. We stratified these based on ATM (n = 88) or BRCA2 (n = 98) mutations. As control groups, mPCs with mutations in 12 other homologous recombination repair (HRR) genes were considered non-BRCA2/ATM HRR-deficient (HRDother, n = 193), whereas lack of any HRR mutations were considered HRR-proficient (HRP; n = 808). Gene expression analyses were performed using Limma. Real-world overall survival was determined from insurance claims data. RESULTS: In noncastrate mPCs, only BRCA2-mutated mPCs exhibited worse clinical outcomes to AR-targeted therapies. In castrate mPCs, both ATM and BRCA2 mutations exhibited worse clinical outcomes to AR-targeted therapies. ATM-mutated mPCs had reduced TP53 mutations and harbored coamplification of 11q13 genes, including CCND1 and genes in the FGF family. BRCA2-mutated tumors showed elevated genomic loss-of-heterozygosity scores and were often tumor mutational burden high. BRCA2-mutated mPCs had upregulation of cell-cycle genes and were enriched in cell-cycle signaling programs. This was distinct from ATM-mutated tumors. CONCLUSIONS: Tumoral ATM and BRCA2 mutations are associated with differential clinical outcomes when patients are stratified by treatments, including hormonal or taxane therapies. ATM- and BRCA2-mutated tumors exhibited differences in co-occurring molecular features. These unique molecular features may inform therapeutic decisions and development of novel therapies.