Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 320
Filtrar
1.
2.
Free Radic Res ; : 1-15, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38599240

RESUMO

Iron is essential for all the lives and mitochondria integrate iron into heme and Fe-S clusters for diverse use as cofactors. Here, we screened mitochondrial proteins in KU812 human chronic myelogenous leukemia cells by glutathione S-transferase pulldown assay with PCBP2 to identify mitochondrial receptors for PCBP2, a major cytosolic Fe(II) chaperone. LC-MS analyses identified TOM20, sideroflexin-3 (SFXN3), SFXN1 and TOM70 in the affinity-score sequence. Stimulated emission depletion microscopy and proteinase-K digestion of mitochondria in HeLa cells revealed that TOM20 is located in the outer membrane of mitochondria whereas SFXN3 is located in the inner membrane. Although direct association was not observed between PCBP2 and SFXN3 with co-immunoprecipitation, proximity ligation assay demonstrated proximal localization of PCBP2 with TOM20 and there was a direct binding between TOM20 and SFXN3. Single knockdown either of PCBP2 and SFXN3 in K562 leukemia cells significantly decreased mitochondrial catalytic Fe(II) and mitochondrial maximal respiration. SFXN3 but not MFRN1 knockout (KO) in mouse embryonic fibroblasts decreased FBXL5 and heme oxygenase-1 (HO-1) but increased transferrin uptake and induced ferritin, indicating that mitochondrial iron entry through SFXN3 is distinct. MFRN1 KO revealed more intense mitochondrial Fe(II) deficiency than SFXN3 KO. Insufficient mitochondrial heme synthesis was evident under iron overload both with SFXN3 and MFRN KO, which was partially reversed by HO-1 inhibitor. Conversely, SFXN3 overexpression caused cytosolic iron deficiency with mitochondrial excess Fe(II), which further sensitized HeLa cells to RSL3-induced ferroptosis. In conclusion, we discovered a novel pathway of iron entry into mitochondria from cytosol through PCBP2-TOM20-SFXN3 axis.

3.
Autophagy ; : 1-34, 2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38442890

RESUMO

Macroautophagy/autophagy is a complex degradation process with a dual role in cell death that is influenced by the cell types that are involved and the stressors they are exposed to. Ferroptosis is an iron-dependent oxidative form of cell death characterized by unrestricted lipid peroxidation in the context of heterogeneous and plastic mechanisms. Recent studies have shed light on the involvement of specific types of autophagy (e.g. ferritinophagy, lipophagy, and clockophagy) in initiating or executing ferroptotic cell death through the selective degradation of anti-injury proteins or organelles. Conversely, other forms of selective autophagy (e.g. reticulophagy and lysophagy) enhance the cellular defense against ferroptotic damage. Dysregulated autophagy-dependent ferroptosis has implications for a diverse range of pathological conditions. This review aims to present an updated definition of autophagy-dependent ferroptosis, discuss influential substrates and receptors, outline experimental methods, and propose guidelines for interpreting the results.Abbreviation: 3-MA:3-methyladenine; 4HNE: 4-hydroxynonenal; ACD: accidentalcell death; ADF: autophagy-dependentferroptosis; ARE: antioxidant response element; BH2:dihydrobiopterin; BH4: tetrahydrobiopterin; BMDMs: bonemarrow-derived macrophages; CMA: chaperone-mediated autophagy; CQ:chloroquine; DAMPs: danger/damage-associated molecular patterns; EMT,epithelial-mesenchymal transition; EPR: electronparamagnetic resonance; ER, endoplasmic reticulum; FRET: Försterresonance energy transfer; GFP: green fluorescent protein;GSH: glutathione;IF: immunofluorescence; IHC: immunohistochemistry; IOP, intraocularpressure; IRI: ischemia-reperfusion injury; LAA: linoleamide alkyne;MDA: malondialdehyde; PGSK: Phen Green™ SK;RCD: regulatedcell death; PUFAs: polyunsaturated fatty acids; RFP: red fluorescentprotein;ROS: reactive oxygen species; TBA: thiobarbituricacid; TBARS: thiobarbituric acid reactive substances; TEM:transmission electron microscopy.

4.
STAR Protoc ; 5(1): 102892, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38363686

RESUMO

Extracellular vesicles (EVs) are complex structures that transport various DNA, RNA, and protein. Recently, new EV secretion mechanisms have been identified through the iron regulatory system in mammalian cells. We revealed that ferroptosis increases EV secretion, which is named ferroptosis-dependent EVs (FedEVs). Here, we describe a step-by-step procedure to isolate GFP-expressing FedEVs for in vitro analysis. The FedEVs are further analyzed by imaging and flow cytometry analysis. For complete details on the use and execution of this protocol, please refer to Ito et al.1.


Assuntos
Vesículas Extracelulares , Ferroptose , Animais , Ferroptose/genética , Proteínas/metabolismo , Técnicas de Cultura de Células , Vesículas Extracelulares/química , Mamíferos
5.
Free Radic Res ; 58(2): 130-143, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38394084

RESUMO

Pathogenic variants of BRCA1/2 constitute hereditary breast and ovarian cancer (HBOC) syndrome, and BRCA1/2 mutant is a risk for various cancers. Whereas the clinical guideline for HBOC patients has been organized for the therapy and prevention of cancer, there is no recommendation on the female reproductive discipline. Indeed, the role of BRCA1/2 pathogenic variants in ovarian reserve has not been established due to the deficiency of appropriate animal models. Here, we used a rat model of Brca2(p.T1942fs/+) mutant of Sprague-Dawley strain with CRISPR-Cas9 editing to evaluate ovarian reserve in females. Fertility and ovarian follicles were evaluated and anti-Müllerian hormone (AMH) was measured at 8-32 weeks of age with a comparison between the wild-type and the mutant rats (MUT). MUT revealed a significantly smaller number of deliveries with fewer total pups. Furthermore, MUT showed a significant decrease in primordial follicles at 20 weeks and a low AMH level at 28 weeks. RNA-sequencing of the ovary at 10 weeks detected acceleration of the DNA damage repair pathway, which was accompanied by oxidative stress-induced DNA double-strand breaks, a decrease in PTEN, and an increase in mTOR in follicular granulosa cells. In conclusion, Brca2(p.T1942fs/+) dissipates primordial follicles via early activation of granulosa cells through oxidative stress, leading to earlier termination of fertility.


Assuntos
Reserva Ovariana , Humanos , Ratos , Feminino , Animais , Reserva Ovariana/genética , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Ratos Sprague-Dawley , Células da Granulosa/metabolismo , Hormônio Antimülleriano/genética , Hormônio Antimülleriano/metabolismo , Estresse Oxidativo
6.
Free Radic Biol Med ; 214: 28-41, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325565

RESUMO

Reactive species are involved in various aspects of neoplastic diseases, including carcinogenesis, cancer-specific metabolism and therapeutics. Non-thermal plasma (NTP) can directly provide reactive species, by integrating atmospheric and interjacent molecules as substrates, to represent a handy strategy to load oxidative stress in situ. NTP causes apoptosis and/or ferroptosis specifically in cancer cells of various types. Plasma-activated Ringer's lactate (PAL) is another modality at the preclinical stage as cancer therapeutics, based on more stable reactive species. PAL specifically kills malignant mesothelioma (MM) cells, employing lysosomal ·NO as a switch from autophagy to ferroptosis. However, the entire molecular mechanisms have not been elucidated yet. Here we studied cytosolic iron regulations in MM and other cancer cells in response to PAL exposure. We discovered that cells with higher catalytic Fe(II) are more susceptible to PAL-induced ferroptosis. PAL caused a cytosolic catalytic Fe(II)-associated pathology through iron chaperones, poly (rC)-binding proteins (PCBP)1/2, inducing a disturbance in glutathione-regulated iron homeostasis. PCBP1/NCOA4-mediated ferritinophagy started at a later phase, further increasing cytosolic catalytic Fe(II), ending in ferroptosis. In contrast, PCBP2 after PAL exposure contributed to iron loading to mitochondria, leading to mitochondrial dysfunction. Therapeutic effect of PAL was successfully applied to an orthotopic MM xenograft model in mice. In conclusion, PAL can selectively sensitize MM cells to ferroptosis by remodeling cytoplasmic iron homeostasis, where glutathione and PCBPs play distinct roles, resulting in lethal ferritinophagy and mitochondrial dysfunction. Our findings indicate the clinical application of PAL as a ferroptosis-inducer and the potential of PCBPs as novel targets in cancer therapeutics.


Assuntos
Ferroptose , Mesotelioma Maligno , Mesotelioma , Doenças Mitocondriais , Humanos , Animais , Camundongos , Proteínas de Transporte , Lactato de Ringer , Glutationa , Ferro , Compostos Ferrosos , Proteínas de Ligação a RNA/genética
7.
Nat Cell Biol ; 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424270

RESUMO

Ferroptosis, an intricately regulated form of cell death characterized by uncontrolled lipid peroxidation, has garnered substantial interest since this term was first coined in 2012. Recent years have witnessed remarkable progress in elucidating the detailed molecular mechanisms that govern ferroptosis induction and defence, with particular emphasis on the roles of heterogeneity and plasticity. In this Review, we discuss the molecular ecosystem of ferroptosis, with implications that may inform and enable safe and effective therapeutic strategies across a broad spectrum of diseases.

8.
PLoS Pathog ; 20(2): e1011954, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38300891

RESUMO

Epstein-Barr virus (EBV) is a ubiquitous human lymphotropic herpesvirus that is causally associated with several malignancies. In addition to latent factors, lytic replication contributes to cancer development. In this study, we examined whether the lytic gene BNRF1, which is conserved among gamma-herpesviruses, has an important role in lymphomagenesis. We found that lymphoblastoid cell lines (LCLs) established by BNRF1-knockout EBV exhibited remarkably lower pathogenicity in a mice xenograft model than LCLs produced by wild-type EBV (LCLs-WT). RNA-seq analyses revealed that BNRF1 elicited the expression of interferon-inducible protein 27 (IFI27), which promotes cell proliferation. IFI27 knockdown in LCLs-WT resulted in excessive production of reactive oxygen species, leading to cell death and significantly decreased their pathogenicity in vivo. We also confirmed that IFI27 was upregulated during primary infection in B-cells. Our findings revealed that BNRF1 promoted robust proliferation of the B-cells that were transformed by EBV latent infection via IFI27 upregulation both in vitro and in vivo.


Assuntos
Infecções por Vírus Epstein-Barr , Herpesviridae , Humanos , Animais , Camundongos , Herpesvirus Humano 4 , Interferons/metabolismo , Regulação para Cima , Herpesviridae/metabolismo , Latência Viral , Proteínas de Membrana/metabolismo
9.
Lab Invest ; 104(2): 100299, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38013118

RESUMO

The pathogenesis of malignant mesothelioma (MM) has been extensively investigated, focusing on stress derived from reactive oxygen species. We aimed to identify diagnostic biomarkers of MM by analyzing proteins in formalin-fixed paraffin-embedded specimens using liquid chromatography-mass spectrometry. We extracted proteins from formalin-fixed paraffin-embedded sections of MM tissues (n = 7) and compared their profiles with those of benign mesothelial tissues (n = 4) and alveolar tissue (n = 1). Proteomic data were statistically assessed and profiled using principal component analysis. We were successful in the classification of MM and healthy tissue. The levels of superoxide dismutase 2 (SOD2), an enzyme that converts superoxide anion into oxygen and hydrogen peroxide, and thioredoxin (TXN), which plays a crucial role in reducing disulfide bonds in proteins, primarily contributed to the classification. Other redox-related proteins, such as pyruvate dehydrogenase subunit X, and ceruloplasmin also contributed to the classification. Protein-protein interaction analysis demonstrated that these proteins play essential roles in MM pathogenesis. Immunohistochemistry revealed that TXN levels were significantly lower, whereas SOD2 levels were significantly higher in MM and lung cancer tissues than in controls. Proteomic profiling suggested that MM tissues experienced increased exposure to hydrogen peroxide and other reactive oxygen species. Combining immunohistochemistry for TXN and SOD2 allows for differentiation among MM, lung cancer, and control tissues; hence, TXN and SOD2 may be promising MM biomarkers and therapeutic targets.


Assuntos
Neoplasias Pulmonares , Mesotelioma Maligno , Superóxido Dismutase , Humanos , Imuno-Histoquímica , Proteômica/métodos , Formaldeído/química , Inclusão em Parafina/métodos , Peróxido de Hidrogênio , Espécies Reativas de Oxigênio , Biomarcadores , Tiorredoxinas , Neoplasias Pulmonares/diagnóstico
10.
Oral Dis ; 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38047766

RESUMO

OBJECTIVE: This study aimed to investigate the effect of plasma-activated Ringer's lactate solution (PAL) on oral squamous cell carcinoma (OSCC) cells and carcinogenic processes with a particular focus on iron and collagenous matrix formation. MATERIALS AND METHODS: We used three OSCC cell lines, one keratinocyte cell line, and two fibroblast lines, and cell viability assays, immunoblotting, flow cytometry, and transmission electron microscopy were performed to evaluate the effect and type of cell death. The effect of PAL treatment on lysyl oxidase (LOX) expression was investigated in vitro and in vivo. Tamoxifen-inducible Mob1a/b double-knockout mice were used for the in vivo experiment. RESULTS: PAL killed OSCC cells more effectively than the control nontumorous cells and suppressed cell migration and invasion. Ferroptosis occurred and the protein level of LOX was downregulated in cancer cells in vitro and in vivo. Additionally, PAL improved the survival rate of mice and suppressed collagenous matrix formation. CONCLUSIONS: We demonstrated that PAL specifically kills OSCC cells and that ferroptosis occurs in vitro and in vivo. Furthermore, PAL can prevent carcinogenesis and improve the survival rate of oral cancer, especially tongue cancer, by changing collagenous matrix formation via LOX suppression.

11.
Redox Biol ; 67: 102890, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37738924

RESUMO

Toxoplasmosis is a major infectious disease, affecting approximately one-third of the world's population; its main clinical manifestation, ocular toxoplasmosis (OT), is a severe sight-threatening disease. Nevertheless, the diagnosis of OT is based on clinical findings, which needs improvement, even with biochemical tests, such as polymerase chain reaction and antibody detections. Furthermore, the efficacy of OT-targeted treatment is limited; thus, additional measures for diagnosis and treatments are needed. Here, we for the first time report a significantly reduced iron concentration in the vitreous humor (VH) of human patients infected with OT. To obtain further insights into molecular mechanisms, we established a mouse model of T. gondii infection, in which intravitreally injected tracer 57Fe, was accumulated in the neurosensory retina. T. gondii-infected eyes showed increased lipid peroxidation, reduction of glutathione peroxidase-4 expression and mitochondrial deformity in the photoreceptor as cristae loss. These findings strongly suggest the involvement of ferroptotic process in the photoreceptor of OT. In addition, deferiprone, an FDA-approved iron chelator, reduced the iron uptake but also ameliorated toxoplasma-induced retinochoroiditis by reducing retinal inflammation. In conclusion, the iron levels in the VH could serve as diagnostic markers and iron chelators as potential treatments for OT.


Assuntos
Coriorretinite , Ferroptose , Toxoplasma , Toxoplasmose Ocular , Animais , Camundongos , Humanos , Toxoplasmose Ocular/diagnóstico , Coriorretinite/diagnóstico , Retina , Ferro
12.
Arch Biochem Biophys ; 746: 109737, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37683905

RESUMO

Ferritin is a spherical nanocage protein for iron storage, composed of 24 light- or heavy-polypeptide chain subunits. A single ferritin molecule can carry up to 4500 iron atoms in its core, which plays an important role in suppressing intracellular iron toxicity. Serum ferritin levels are used as a marker for the total amount of iron stored in the body. Most serum ferritin is iron-free (apo-ferritin) and it is unclear how ferritin is released from cells. Ferritin is secreted into serum via extracellular vesicles (EVs) or the secretory autophagy pathway but not via the classical endoplasmic reticulum (ER)-to-Golgi secretion pathway. We recently discovered that the level of tetraspanin CD63, a common EV marker, is post-transcriptionally regulated by the intracellular iron level and both CD63 and ferritin expression is induced by iron loading. Ferritin is incorporated into CD63(+)-EVs through the ferritin-specific autophagy adapter molecule, NCOA4, and then secreted from cells. EV production differs drastically depending on cell type and physiological conditions. Extracellular matrix detached cells express pentaspanin prominin 2 and prominin 2(+)-EVs secrete ferritin independently of NCOA4 trafficking. Ferritin is tightly bound to iron in EVs and functions as an iron-carrier protein in the extracellular environment. Cells can suppress ferroptosis by secreting holo-ferritin, which reduces intracellular iron concentration. However, this exposes the neighboring cells receiving the secreted holo-ferritin to a large excess of iron. This results in cellular toxicity through increased generation of reactive oxygen species (ROS). Here we review the machinery by which ferritin is incorporated into EVs and its role as an intercellular communication molecule.


Assuntos
Vesículas Extracelulares , Antígeno AC133 , Transporte Biológico , Autofagia , Ferritinas
13.
Cell Death Differ ; 30(9): 2092-2103, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37542104

RESUMO

Multiple sclerosis (MS) is a chronic autoimmune disorder characterized by central nervous (CNS) demyelination resulting in axonal injury and neurological deficits. Essentially, MS is driven by an auto-amplifying mechanism of inflammation and cell death. Current therapies mainly focus on disease modification by immunosuppression, while no treatment specifically focuses on controlling cell death injury. Here, we report that ferroptosis, an iron-catalyzed mode of regulated cell death (RCD), contributes to MS disease progression. Active and chronic MS lesions and cerebrospinal fluid (CSF) of MS patients revealed several signs of ferroptosis, reflected by the presence of elevated levels of (labile) iron, peroxidized phospholipids and lipid degradation products. Treatment with our candidate lead ferroptosis inhibitor, UAMC-3203, strongly delays relapse and ameliorates disease progression in a preclinical model of relapsing-remitting MS. In conclusion, the results identify ferroptosis as a detrimental and targetable factor in MS. These findings create novel treatment options for MS patients, along with current immunosuppressive strategies.


Assuntos
Ferroptose , Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Humanos , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Esclerose Múltipla Recidivante-Remitente/líquido cefalorraquidiano , Progressão da Doença , Axônios/metabolismo , Doença Crônica
14.
Arch Biochem Biophys ; 745: 109718, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37579931

RESUMO

Current progress in biology and medical science is based on the observation at the level of nanometers via electron microscopy and computation. Of note, the size of most cells in higher species exists in a limited range from 5 to 50 µm. Recently, it was demonstrated that endogenous extracellular nanoparticles play a role in communication among various cellular types in a variety of contexts. Among them, exosomes in serum have been established as biomarkers for human diseases by analyzing the cargo molecules. No life on the earth can survive without iron. However, excess iron can be a risk for carcinogenesis in rodents and humans. Nano-sized molecules may cause unexpected bioeffects, including carcinogenesis, which is a process to establish cellular iron addiction with ferroptosis-resistance. Asbestos and carbon nanotubes are the typical examples, leading to carcinogenesis by the alteration of iron metabolism. Recently, we found that CD63, one of the representative markers of exosomes, is under the regulation of iron-responsive element/iron-regulatory protein system. This is a safe strategy to share excess iron in the form of holo-ferritin between iron-sufficient and -deficient cells. On the other hand, damaged cells may secrete holo-ferritin-loaded exosomes as in the case of macrophages in ferroptosis after asbestos exposure. These holo-ferritin-loaded exosomes can cause mutagenic DNA damage in the recipient mesothelial cells. Thus, there is an iron link between exogenous and endogenous nanoparticles, which requires further investigation for better understanding and the future applications.


Assuntos
Amianto , Sobrecarga de Ferro , Nanopartículas , Nanotubos de Carbono , Humanos , Ferro/metabolismo , Ferritinas , Amianto/metabolismo , Carcinogênese
15.
Free Radic Res ; 57(3): 239-270, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37395063

RESUMO

This review provides a description of the historical background of the development of biological applications of low-temperature plasmas. The generation of plasma, methods and devices, plasma sources, and measurements of plasma properties, such as electron dynamics and chemical species generation in both gaseous and aqueous phases, were assessed. Currently, direct irradiation methods for plasma discharges contacting biological surfaces, such as the skin and teeth, are related to plasma biological interactions. Indirect methods using plasma-treated liquids are based on plasma-liquid interactions. The use of these two methods is rapidly increasing in preclinical studies and cancer therapy. The authors address the prospects for further developments in cancer therapeutic applications by understanding the interactions between the plasma and living organisms.


Assuntos
Neoplasias , Gases em Plasma , Humanos , Gases em Plasma/uso terapêutico , Espécies Reativas de Oxigênio/química , Temperatura , Gases , Neoplasias/terapia
16.
BMC Cancer ; 23(1): 487, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37254056

RESUMO

Organoids are a three-dimensional (3D) culture system that simulate actual organs. Therefore, tumor organoids are expected to predict precise response to chemotherapy in patients. However, to date, few studies have studied the drug responses in organoids of malignant mesothelioma (MM). The poor prognosis of MM emphasizes the importance of establishing a protocol for generating MM-organoid for research and clinical use. Here, we established murine MM organoids from p53+/- or wild-type C57BL/6 strain by intraperitoneal injection either with crocidolite or carbon nanotube. Established MM-organoids proliferated in Matrigel as spheroids. Subcutaneous injection assays revealed that the MM-organoids mimicked actual tissue architecture and maintained the original histological features of the primary MM. RNA sequencing and pathway analyses revealed that the significant expressional differences between the 2D- and 3D-culture systems were observed in receptor tyrosine kinases, including IGF1R and EGFR, glycosylation and cholesterol/steroid metabolism. MM-organoids exhibited a more sensitive response to cisplatin through stable plasma membrane localization of a major cisplatin transporter, copper transporter 1/Slc31A1 (Ctr1) in comparison to 2D-cultures, presumably through glycosylation and lipidation. The Matrigel culture system facilitated the localization of CTR1 on the plasma membrane, which simulated the original MMs and the subcutaneous xenografts. These results suggest that the newly developed protocol for MM-organoids is useful to study strategies to overcome chemotherapy resistance to cisplatin.


Assuntos
Cisplatino , Transportador de Cobre 1 , Mesotelioma Maligno , Animais , Humanos , Camundongos , Cisplatino/farmacologia , Colágeno/metabolismo , Mesotelioma Maligno/metabolismo , Organoides/patologia , Transportador de Cobre 1/metabolismo
17.
Free Radic Res ; 57(2): 91-104, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37067923

RESUMO

Cold atmospheric pressure plasmas are promising medical tools that can assist in cancer treatment. While the medical pathology mechanism is substantially understood, knowledge of the contribution of reactive species formed in plasma and the mode of activation of biochemical pathways is insufficient. Herein, we present a concept involving antitumoral plasma-activated organics, which is envisaged to increase cytotoxicity levels against cancer cells. Ringer's acetate solution was irradiated by low-temperature plasma at atmospheric pressure and possible reaction pathways of the compound generation are presented. The chemical compounds formed by plasma treatment and their effects on non-tumorigenic breast epithelial cells (MCF-10A) and breast cancer cells (MCF-7) were investigated. The cell viability results have shown that plasma-derived compounds have both, stimulatory and inhibitory effects on cell viability, depending on the concentration of the generated compounds in the irradiated liquids. Previous studies have shown that oxidative stresses involving reactive oxygen and nitrogen species (RONS) can be used to kill cancer cells. Hence, while RONS offers promising first-step killing effects, cell viability results have shown that plasma-derived compounds, such as acetic anhydride and ethyl acetate, have the potential to play important roles in plasma-based cancer therapy.


Assuntos
Neoplasias , Gases em Plasma , Humanos , Solução de Ringer , Gases em Plasma/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Pressão Atmosférica
18.
Life Sci Alliance ; 6(6)2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37045472

RESUMO

Old animals display significant alterations in sleep-wake patterns such as increases in sleep fragmentation and sleep propensity. Here, we demonstrated that PR-domain containing protein 13 (Prdm13)+ neurons in the dorsomedial hypothalamus (DMH) are activated during sleep deprivation (SD) in young mice but not in old mice. Chemogenetic inhibition of Prdm13+ neurons in the DMH in young mice promotes increase in sleep attempts during SD, suggesting its involvement in sleep control. Furthermore, DMH-specific Prdm13-knockout (DMH-Prdm13-KO) mice recapitulated age-associated sleep alterations such as sleep fragmentation and increased sleep attempts during SD. These phenotypes were further exacerbated during aging, with increased adiposity and decreased physical activity, resulting in shortened lifespan. Dietary restriction (DR), a well-known anti-aging intervention in diverse organisms, ameliorated age-associated sleep fragmentation and increased sleep attempts during SD, whereas these effects of DR were abrogated in DMH-Prdm13-KO mice. Moreover, overexpression of Prdm13 in the DMH ameliorated increased sleep attempts during SD in old mice. Therefore, maintaining Prdm13 signaling in the DMH might play an important role to control sleep-wake patterns during aging.


Assuntos
Hipotálamo , Privação do Sono , Camundongos , Animais , Hipotálamo/metabolismo , Privação do Sono/metabolismo , Obesidade/metabolismo , Sono , Dieta , Histona-Lisina N-Metiltransferase/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
19.
Nat Nanotechnol ; 18(6): 628-636, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37024598

RESUMO

For the design and development of innovative carbon nanotube (CNT)-based tools and applications, an understanding of the molecular interactions between CNTs and biological systems is essential. In this study, a three-dimensional protein-structure-based in silico screen identified the paired immune receptors, sialic acid immunoglobulin-like binding lectin-5 (Siglec-5) and Siglec-14, as CNT-recognizing receptors. Molecular dynamics simulations showed the spatiotemporally stable association of aromatic residues on the extracellular loop of Siglec-5 with CNTs. Siglec-14 mediated spleen tyrosine kinase (Syk)-dependent phagocytosis of multiwalled CNTs and the subsequent secretion of interleukin-1ß from human monocytes. Ectopic in vivo expression of human Siglec-14 on mouse alveolar macrophages resulted in enhanced recognition of multiwalled CNTs and exacerbated pulmonary inflammation. Furthermore, fostamatinib, a Syk inhibitor, blocked Siglec-14-mediated proinflammatory responses. These results indicate that Siglec-14 is a human activating receptor recognizing CNTs and that blockade of Siglec-14 and the Syk pathway may overcome CNT-induced inflammation.


Assuntos
Nanotubos de Carbono , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico , Humanos , Camundongos , Animais , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Inflamação/induzido quimicamente , Fagocitose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA