RESUMO
Multimetallic nanoparticles often enhance the catalytic performance of their monometallic counterparts by increasing reaction rates, catalyst selectivity, and/or stability. A prerequisite for understanding structure- and composition-associated properties, however, is the careful design of multimetallic nanoparticles with various structures and compositions. Here, bimetallic Pd/Sn-based nanoparticles are prepared with a tunable composition and structure exploiting ionic liquids (ILs) as reaction medium (i. e., methyltrioctylammonium bis(trifluoromethylsulfonyl)imide). The nanoparticles are obtained in a one-pot synthetic procedure by reducing the metal salt precursors with triethylborohydride in the IL. The results show that the reaction parameters, in particular the nature and ratio of the Pd2+ /Sn2+ precursors as well as the reaction temperature, influence NP formation and composition. X-ray diffraction with Rietveld analysis and transmission electron microscopy are employed to determine NP size and phase composition. Under optimized reaction conditions Pd2 Sn or PdSn nanocrystals are formed as single-phase products after introducing an additional annealing step at 200 °C. Nanocrystals with intermetallic composition reveal enhanced catalytic properties in the semihydrogenation of diphenylacetylene which was used as a model reaction.
RESUMO
We demonstrate a method for the synthesis of bimetallic nanoparticles consisting of Pt and Sn. A synthesis strategy is used in which the particular physico-chemical properties of ionic liquids (ILs) are exploited to control both nucleation and growth processes. The nanoparticles form colloidal sols of very high colloidal stability in the IL, which is particularly interesting in view of their use as quasi-homogeneous catalysts. Procedures for both nanoparticle extraction in conventional solvents and for nanoparticle precipitation are presented. The size, structure and composition of the synthesized nanocrystals are confirmed using inductively coupled plasma atomic emission spectroscopy (ICP-AES), X-ray diffraction analysis (XRD) and transmission electron microscopy (TEM) with energy-dispersive X-ray spectroscopy (EDX). By this, we show that the nanocrystals are random-type alloy and of small (2-3 nm) size. The catalytic activity and selectivity in the hydrogenation of α,ß-unsaturated aldehydes is tested in a semi-continuous batch-type reactor. In this context, the bimetallic Pt/Sn-based nanoparticles reveal a high selectivity towards the unsaturated alcohol.
Assuntos
Líquidos Iônicos/química , Nanopartículas/química , Platina/química , Estanho/química , Espectrometria por Raios XRESUMO
CMP as large surface area materials have attracted growing interest recently, due to their high variability in the incorporation of functional groups in combination with their outstanding thermal and chemical stability, and low densities. However, their insoluble nature causes problems in their processing since usually applied techniques such as spin coating are not available. Especially for membrane applications, where the processing of CMP as thin films is desirable, the processing problems have hindered their commercial application. Here we describe the interfacial synthesis of CMP thin films on functionalized substrates via molecular layer-by-layer (l-b-l) synthesis. This process allows the preparation of films with desired thickness and composition and even desired composition gradients. The use of sacrificial supports allows the preparation of freestanding membranes by dissolution of the support after the synthesis. To handle such ultra-thin freestanding membranes the protection with sacrificial coatings showed great promise, to avoid rupture of the nanomembranes. To transfer the nanomembranes to the desired substrate, the coated membranes are upfloated at the air-liquid interface and then transferred via dip coating.