Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Nucleic Acids Res ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38808668

RESUMO

The replicative helicase, DnaB, is a central component of the replisome and unwinds duplex DNA coupled with immediate template-dependent DNA synthesis by the polymerase, Pol III. The rate of helicase unwinding is dynamically regulated through structural transitions in the DnaB hexamer between dilated and constricted states. Site-specific mutations in DnaB enforce a faster more constricted conformation that dysregulates unwinding dynamics, causing replisome decoupling that generates excess ssDNA and induces severe cellular stress. This surplus ssDNA can stimulate RecA recruitment to initiate recombinational repair, restart, or activation of the transcriptional SOS response. To better understand the consequences of dysregulated unwinding, we combined targeted genomic dnaB mutations with an inducible RecA filament inhibition strategy to examine the dependencies on RecA in mitigating replisome decoupling phenotypes. Without RecA filamentation, dnaB:mut strains had reduced growth rates, decreased mutagenesis, but a greater burden from endogenous damage. Interestingly, disruption of RecA filamentation in these dnaB:mut strains also reduced cellular filamentation but increased markers of double strand breaks and ssDNA gaps as detected by in situ fluorescence microscopy and FACS assays, TUNEL and PLUG, respectively. Overall, RecA plays a critical role in strain survival by protecting and processing ssDNA gaps caused by dysregulated helicase activity in vivo.

2.
Anal Bioanal Chem ; 415(25): 6201-6212, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37542535

RESUMO

The biological role of the bacterial chloramphenicol (Chl)-resistance enzyme, chloramphenicol acetyltransferase (CAT), has seen renewed interest due to the resurgent use of Chl against multi-drug-resistant microbes. This looming threat calls for more rationally designed antibiotic derivatives that have improved antimicrobial properties and reduced toxicity in humans. Herein, we utilize native ion mobility spectrometry-mass spectrometry (IMS-MS) to investigate the gas-phase structure and thermodynamic stability of the type I variant of CAT from Escherichia coli (EcCATI) and several EcCATI:ligand-bound complexes. EcCATI readily binds multiple Chl without incurring significant changes to its gas-phase structure or stability. A non-hydrolyzable acetyl-CoA derivative (S-ethyl-CoA, S-Et-CoA) was used to kinetically trap EcCATI and Chl in a ternary, ligand-bound state (EcCATI:S-Et-CoA:Chl). Using collision-induced unfolding (CIU)-IMS-MS, we find that Chl dissociates from EcCATI:S-Et-CoA:Chl complexes at low collision energies, while S-Et-CoA remains bound to EcCATI even as protein unfolding occurs. Gas-phase binding constants further suggest that EcCATI binds S-Et-CoA more tightly than Chl. Both ligands exhibit negative cooperativity of subsequent ligand binding in their respective binary complexes. While we observe no significant change in structure or stability to EcCATI when bound to either or both ligands, we have elucidated novel gas-phase unfolding and dissociation behavior and provided a foundation for further characterization of alternative substrates and/or inhibitors of EcCATI.


Assuntos
Escherichia coli , Humanos , Cloranfenicol O-Acetiltransferase/química , Cloranfenicol O-Acetiltransferase/metabolismo , Ligantes , Acetilcoenzima A , Espectrometria de Massas/métodos , Escherichia coli/química , Termodinâmica
3.
Nucleic Acids Res ; 51(14): 7330-7341, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37309874

RESUMO

The minichromosomal maintenance proteins, MCM8 and MCM9, are more recent evolutionary additions to the MCM family, only cooccurring in selected higher eukaryotes. Mutations in these genes are directly linked to ovarian insufficiency, infertility, and several cancers. MCM8/9 appears to have ancillary roles in fork progression and recombination of broken replication forks. However, the biochemical activity, specificities and structures have not been adequately illustrated, making mechanistic determination difficult. Here, we show that human MCM8/9 (HsMCM8/9) is an ATP dependent DNA helicase that unwinds fork DNA substrates with a 3'-5' polarity. High affinity ssDNA binding occurs in the presence of nucleoside triphosphates, while ATP hydrolysis weakens the interaction with DNA. The cryo-EM structure of the HsMCM8/9 heterohexamer was solved at 4.3 Å revealing a trimer of heterodimer configuration with two types of interfacial AAA+ nucleotide binding sites that become more organized upon binding ADP. Local refinements of the N or C-terminal domains (NTD or CTD) improved the resolution to 3.9 or 4.1 Å, respectively, and shows a large displacement in the CTD. Changes in AAA+ CTD upon nucleotide binding and a large swing between the NTD and CTD likely implies that MCM8/9 utilizes a sequential subunit translocation mechanism for DNA unwinding.


Assuntos
DNA Helicases , Humanos , DNA/metabolismo , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Eucariotos/metabolismo , Nucleotídeos , DNA Helicases/química , Microscopia Crioeletrônica
4.
Nat Commun ; 13(1): 5090, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36042199

RESUMO

The minichromosome maintenance (MCM) 8/9 helicase is a AAA+ complex involved in DNA replication-associated repair. Despite high sequence homology to the MCM2-7 helicase, a precise cellular role for MCM8/9 has remained elusive. We have interrogated the DNA synthesis ability and replication fork stability in cells lacking MCM8 or 9 and find that there is a functional partitioning of MCM8/9 activity between promoting replication fork progression and protecting persistently stalled forks. The helicase function of MCM8/9 aids in normal replication fork progression, but upon persistent stalling, MCM8/9 directs additional downstream stabilizers, including BRCA1 and Rad51, to protect forks from excessive degradation. Loss of MCM8 or 9 slows the overall replication rate and allows for excessive nascent strand degradation, detectable by increased markers of genomic damage. This evidence defines multifunctional roles for MCM8/9 in promoting normal replication fork progression and genome integrity following stress.


Assuntos
Reparo do DNA , Replicação do DNA , Instabilidade Genômica , Humanos , Proteínas de Manutenção de Minicromossomo/genética
5.
Methods Enzymol ; 673: xvii-xx, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35965020
6.
Methods Enzymol ; 672: 125-142, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35934472

RESUMO

The genome of prokaryotes can be damaged by a variety of endogenous and exogenous factors, including reactive oxygen species, UV exposure, and antibiotics. To better understand these repair processes and the impact they may have on DNA replication, normal genome maintenance processes can be perturbed by removing or editing associated genes and monitoring DNA repair outcomes. In particular, the replisome activities of DNA unwinding by the helicase and DNA synthesis by the polymerase must be tightly coupled to prevent any appreciable single strand DNA (ssDNA) from accumulating and amplifying genomic stress. If decoupled, vulnerable ssDNA would persist, likely leading to double strand breaks (DSBs) or requiring replication restart mechanisms downstream of a stall. In either case, free 3'-OH strands would exist, resulting from ssDNA gaps in the leading strand or complete DSBs. Terminal deoxyribonucleotide transferase (TdT)-mediated dUTP nick end labeling (TUNEL) can enzymatically label ssDNA ends with bromo-deoxy uridine triphosphate (BrdU) to detect free 3'-OH DNA ends in the E. coli genome. Labeled DNA ends can be detected and quantified using fluorescence microscopy or flow cytometry. This methodology is useful in applications where in situ investigation of DNA damage and repair are of interest, including effects from enzyme mutations or deletions and exposure to various environmental conditions.


Assuntos
DNA de Cadeia Simples , Escherichia coli , DNA , DNA Nucleotidilexotransferase , DNA de Cadeia Simples/genética , DNA Polimerase Dirigida por DNA/metabolismo , DnaB Helicases/genética , Escherichia coli/metabolismo , Marcação In Situ das Extremidades Cortadas
7.
Methods Enzymol ; 672: xv-xviii, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35934487
8.
Methods ; 204: 160-171, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34758393

RESUMO

Helicase enzymes translocate along an RNA or DNA template with a defined polarity to unwind, separate, or remodel duplex strands for a variety of genome maintenance processes. Helicase mutations are commonly associated with a variety of diseases including aging, cancer, and neurodegeneration. Biochemical characterization of these enzymes has provided a wealth of information on the kinetics of unwinding and substrate preferences, and several high-resolution structures of helicases alone and bound to oligonucleotides have been solved. Together, they provide mechanistic insights into the structural translocation and unwinding orientations of helicases. However, these insights rely on structural inferences derived from static snapshots. Instead, continued efforts should be made to combine structure and kinetics to better define active translocation orientations of helicases. This review explores many of the biochemical and biophysical methods utilized to map helicase binding orientation to DNA or RNA substrates and includes several time-dependent methods to unequivocally map the active translocation orientation of these enzymes to better define the active leading and trailing faces.


Assuntos
Ácidos Nucleicos , DNA/química , DNA Helicases/química , Replicação do DNA , Ácidos Nucleicos/genética , RNA/genética
9.
PLoS Genet ; 17(11): e1009886, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34767550

RESUMO

Helicase regulation involves modulation of unwinding speed to maintain coordination of DNA replication fork activities and is vital for replisome progression. Currently, mechanisms for helicase regulation that involve interactions with both DNA strands through a steric exclusion and wrapping (SEW) model and conformational shifts between dilated and constricted states have been examined in vitro. To better understand the mechanism and cellular impact of helicase regulation, we used CRISPR-Cas9 genome editing to study four previously identified SEW-deficient mutants of the bacterial replicative helicase DnaB. We discovered that these four SEW mutations stabilize constricted states, with more fully constricted mutants having a generally greater impact on genomic stress, suggesting a dynamic model for helicase regulation that involves both excluded strand interactions and conformational states. These dnaB mutations result in increased chromosome complexities, less stable genomes, and ultimately less viable and fit strains. Specifically, dnaB:mut strains present with increased mutational frequencies without significantly inducing SOS, consistent with leaving single-strand gaps in the genome during replication that are subsequently filled with lower fidelity. This work explores the genomic impacts of helicase dysregulation in vivo, supporting a combined dynamic regulatory mechanism involving a spectrum of DnaB conformational changes and relates current mechanistic understanding to functional helicase behavior at the replication fork.


Assuntos
Cromossomos Bacterianos , DnaB Helicases/metabolismo , Escherichia coli/genética , Instabilidade Genômica , Sistemas CRISPR-Cas , DNA Bacteriano/química , DNA Bacteriano/genética , DnaB Helicases/química , DnaB Helicases/genética , Escherichia coli/enzimologia , Mutação
11.
J Biol Chem ; 296: 100355, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33539926

RESUMO

The MCM8/9 complex is implicated in aiding fork progression and facilitating homologous recombination (HR) in response to several DNA damage agents. MCM9 itself is an outlier within the MCM family containing a long C-terminal extension (CTE) comprising 42% of the total length, but with no known functional components and high predicted disorder. In this report, we identify and characterize two unique motifs within the primarily unstructured CTE that are required for localization of MCM8/9 to sites of mitomycin C (MMC)-induced DNA damage. First, an unconventional "bipartite-like" nuclear localization (NLS) motif consisting of two positively charged amino acid stretches separated by a long intervening sequence is required for the nuclear import of both MCM8 and MCM9. Second, a variant of the BRC motif (BRCv) similar to that found in other HR helicases is necessary for localization to sites of MMC damage. The MCM9-BRCv directly interacts with and recruits RAD51 downstream to MMC-induced damage to aid in DNA repair. Patient lymphocytes devoid of functional MCM9 and discrete MCM9 knockout cells have a significantly impaired ability to form RAD51 foci after MMC treatment. Therefore, the disordered CTE in MCM9 is functionally important in promoting MCM8/9 activity and in recruiting downstream interactors; thus, requiring full-length MCM9 for proper DNA repair.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Dano ao DNA/efeitos dos fármacos , Proteínas de Manutenção de Minicromossomo/metabolismo , Mitomicina/farmacologia , Rad51 Recombinase/metabolismo , Linhagem Celular Tumoral , Células HEK293 , Humanos , Proteínas de Manutenção de Minicromossomo/análise , Rad51 Recombinase/análise
12.
Front Mol Biosci ; 8: 811540, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35071328

RESUMO

High fidelity (HiFi) DNA polymerases (Pols) perform the bulk of DNA synthesis required to duplicate genomes in all forms of life. Their structural features, enzymatic mechanisms, and inherent properties are well-described over several decades of research. HiFi Pols are so accurate that they become stalled at sites of DNA damage or lesions that are not one of the four canonical DNA bases. Once stalled, the replisome becomes compromised and vulnerable to further DNA damage. One mechanism to relieve stalling is to recruit a translesion synthesis (TLS) Pol to rapidly synthesize over and past the damage. These TLS Pols have good specificities for the lesion but are less accurate when synthesizing opposite undamaged DNA, and so, mechanisms are needed to limit TLS Pol synthesis and recruit back a HiFi Pol to reestablish the replisome. The overall TLS process can be complicated with several cellular Pols, multifaceted protein contacts, and variable nucleotide incorporation kinetics all contributing to several discrete substitution (or template hand-off) steps. In this review, we highlight the mechanistic differences between distributive equilibrium exchange events and concerted contact-dependent switching by DNA Pols for insertion, extension, and resumption of high-fidelity synthesis beyond the lesion.

13.
Nucleic Acids Res ; 48(19): 10986-10997, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-32997110

RESUMO

During DNA replication, the presence of 8-oxoguanine (8-oxoG) lesions in the template strand cause the high-fidelity (HiFi) DNA polymerase (Pol) to stall. An early response to 8-oxoG lesions involves 'on-the-fly' translesion synthesis (TLS), in which a specialized TLS Pol is recruited and replaces the stalled HiFi Pol for lesion bypass. The length of TLS must be long enough for effective bypass, but it must also be regulated to minimize replication errors by the TLS Pol. The exact position where the TLS Pol ends and the HiFi Pol resumes (i.e. the length of the TLS patch) has not been described. We use steady-state and pre-steady-state kinetic assays to characterize lesion bypass intermediates formed by different archaeal polymerase holoenzyme complexes that include PCNA123 and RFC. After bypass of 8-oxoG by TLS PolY, products accumulate at the template position three base pairs beyond the lesion. PolY is catalytically poor for subsequent extension from this +3 position beyond 8-oxoG, but this inefficiency is overcome by rapid extension of HiFi PolB1. The reciprocation of Pol activities at this intermediate indicates a defined position where TLS Pol extension is limited and where the DNA substrate is handed back to the HiFi Pol after bypass of 8-oxoG.


Assuntos
Proteínas Arqueais/metabolismo , Reparo do DNA , Replicação do DNA , DNA Arqueal/química , DNA Polimerase Dirigida por DNA/metabolismo , Archaea/enzimologia , Archaea/genética , Dano ao DNA , Guanina/análogos & derivados , Guanina/metabolismo
14.
Bio Protoc ; 10(12): e3649, 2020 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-33659320

RESUMO

The orientation of a DNA-binding protein bound on DNA is determinative in directing the assembly of other associated proteins in the complex for enzymatic action. As an example, in a replisome, the orientation of the DNA helicase at the replication fork directs the assembly of the other associated replisome proteins. We have recently determined the orientation of Saccharalobus solfataricus (Sso) Minichromosome maintenance (MCM) helicase at a DNA fork utilizing a site-specific DNA cleavage and mapping assay. Here, we describe a detailed protocol for site-specific DNA footprinting using 4-azidophenacyl bromide (APB). This method provides a straightforward, biochemical method to reveal the DNA binding orientation of SsoMCM helicase and can be applied to other DNA binding proteins.

15.
Elife ; 82019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31661075

RESUMO

DNA replication requires that the duplex genomic DNA strands be separated; a function that is implemented by ring-shaped hexameric helicases in all Domains. Helicases are composed of two domains, an N- terminal DNA binding domain (NTD) and a C- terminal motor domain (CTD). Replication is controlled by loading of helicases at origins of replication, activation to preferentially encircle one strand, and then translocation to begin separation of the two strands. Using a combination of site-specific DNA footprinting, single-turnover unwinding assays, and unique fluorescence translocation monitoring, we have been able to quantify the binding distribution and the translocation orientation of Saccharolobus (formally Sulfolobus) solfataricus MCM on DNA. Our results show that both the DNA substrate and the C-terminal winged-helix (WH) domain influence the orientation but that translocation on DNA proceeds N-first.


Assuntos
DNA Helicases/metabolismo , Replicação do DNA , DNA Arqueal/metabolismo , Proteínas de Manutenção de Minicromossomo/metabolismo , Sulfolobus solfataricus/enzimologia , Sulfolobus solfataricus/metabolismo , Ligação Proteica , Domínios Proteicos
16.
Enzymes ; 45: 183-223, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31627877

RESUMO

Hexameric DNA helicases involved in the separation of duplex DNA at the replication fork have a universal architecture but have evolved from two separate protein families. The consequences are that the regulation, translocation polarity, strand specificity, and architectural orientation varies between phage/bacteria to that of archaea/eukaryotes. Once assembled and activated for single strand DNA translocation and unwinding, the DNA polymerase couples tightly to the helicase forming a robust replisome complex. However, this helicase-polymerase interaction can be challenged by various forms of endogenous or exogenous agents that can stall the entire replisome or decouple DNA unwinding from synthesis. The consequences of decoupling can be severe, leading to a build-up of ssDNA requiring various pathways for replication fork restart. All told, the hexameric helicase sits prominently at the front of the replisome constantly responding to a variety of obstacles that require transient unwinding/reannealing, traversal of more stable blocks, and alternations in DNA unwinding speed that regulate replisome progression.


Assuntos
DNA Helicases/metabolismo , Replicação do DNA , DNA de Cadeia Simples/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , DNA/biossíntese , DNA/química , Complexos Multienzimáticos/metabolismo , DNA/metabolismo , DNA de Cadeia Simples/química
17.
Cell Cycle ; 18(10): 1047-1055, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31014174

RESUMO

Several decades of research have identified Mcm10 hanging around the replisome making several critical contacts with a number of proteins but with no real disclosed function. Recently, the O'Donnell laboratory has been better able to map the interactions of Mcm10 with a larger Cdc45/GINS/MCM (CMG) unwinding complex placing it at the front of the replication fork. They have shown biochemically that Mcm10 has the impressive ability to strip off single-strand binding protein (RPA) and reanneal complementary DNA strands. This has major implications in controlling DNA unwinding speed as well as responding to various situations where fork reversal is needed. This work opens up a number of additional facets discussed here revolving around accessing the DNA junction for different molecular purposes within a crowded replisome. Abbreviations: alt-NHEJ: Alternative Nonhomologous End-Joining; CC: Coli-Coil motif; CMG: Cdc45/GINS/MCM2-7; CMGM: Cdc45/GINS/Mcm2-7/Mcm10; CPT: Camptothecin; CSB: Cockayne Syndrome Group B protein; CTD: C-Terminal Domain; DSB: Double-Strand Break; DSBR: Double-Strand Break Repair; dsDNA: Double-Stranded DNA; GINS: go-ichi-ni-san, Sld5-Psf1-Psf2-Psf3; HJ Dis: Holliday Junction dissolution; HJ Res: Holliday Junction resolution; HR: Homologous Recombination; ICL: Interstrand Cross-Link; ID: Internal Domain; MCM: Minichromosomal Maintenance; ND: Not Determined; NTD: N-Terminal Domain; PCNA: Proliferating Cell Nuclear Antigen; RPA: Replication Protein A; SA: Strand Annealing; SE: Strand Exchange; SEW: Steric Exclusion and Wrapping; ssDNA: Single-Stranded DNA; TCR: Transcription-Coupled Repair; TOP1: Topoisomerase.


Assuntos
Replicação do DNA , Proteínas Fúngicas/fisiologia , Proteínas de Manutenção de Minicromossomo/fisiologia , Pontos de Checagem do Ciclo Celular , DNA/química , Modelos Genéticos , Leveduras/genética
18.
DNA Repair (Amst) ; 76: 1-10, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30743181

RESUMO

There are several DNA helicases involved in seemingly overlapping aspects of homologous and homoeologous recombination. Mutations of many of these helicases are directly implicated in genetic diseases including cancer, rapid aging, and infertility. MCM8/9 are recent additions to the catalog of helicases involved in recombination, and so far, the evidence is sparse, making assignment of function difficult. Mutations in MCM8/9 correlate principally with primary ovarian failure/insufficiency (POF/POI) and infertility indicating a meiotic defect. However, they also act when replication forks collapse/break shuttling products into mitotic recombination and several mutations are found in various somatic cancers. This review puts MCM8/9 in context with other replication and recombination helicases to narrow down its genomic maintenance role. We discuss the known structure/function relationship, the mutational spectrum, and dissect the available cellular and organismal data to better define its role in recombination.


Assuntos
Genoma/genética , Proteínas de Manutenção de Minicromossomo/metabolismo , Animais , Replicação do DNA , Humanos , Infertilidade/genética , Infertilidade/metabolismo , Meiose/genética , Proteínas de Manutenção de Minicromossomo/química , Recombinação Genética
19.
Biochemistry ; 57(39): 5672-5682, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30199238

RESUMO

A growing body of evidence supports a steric exclusion and wrapping model for DNA unwinding in which hexameric helicases interact with the excluded single-stranded DNA (ssDNA) in addition to the encircled strand. Interactions with the excluded ssDNA have been shown to be mediated primarily by electrostatic interactions, but base stacking with surface-exposed tyrosine residues is an alternative hypothesis. Here, we mutated several external tyrosine and positively charged residues from full-length Sulfolobus solfataricus MCM along the proposed path of excluded strand binding and assessed their impact on DNA unwinding. Four of the five tyrosine residues had significant decreases in their level of unwinding, and one, Y519A, located within the α/ß-α linker region of the C-terminal domain, had the most severe perturbation attributed to the disruption of hexamerization. The Y519 mutant exhibits an enhanced and stabilized secondary structure that is modulated by temperature, binding DNA with a higher apparent affinity and suggesting a pathway for hexameric assembly. Hydrogen/deuterium exchange coupled to mass spectrometry was used to map deuterium uptake differences between wild-type and Y519A apo structures highlighting global differences in solvent accessible areas consistent with altered quaternary structure. Two of the five electrostatic mutants had significantly reduced levels of DNA unwinding and combined with previous mutations better define the exterior binding path. The importance of the electrostatic excluded strand interaction was confirmed by use of morpholino DNA substrates that showed analogous reduced unwinding rates. These results better define the hexameric assembly and influence of the excluded strand interactions in controlling DNA unwinding by the archaeal MCM complex.


Assuntos
Proteínas Arqueais/metabolismo , DNA de Cadeia Simples/metabolismo , Proteínas de Manutenção de Minicromossomo/metabolismo , Sulfolobus solfataricus/enzimologia , Sequência de Aminoácidos , Proteínas Arqueais/genética , Sequência de Bases , Sítios de Ligação , DNA de Cadeia Simples/genética , Ensaios Enzimáticos , Proteínas de Manutenção de Minicromossomo/genética , Mutação , Conformação de Ácido Nucleico , Ligação Proteica , Multimerização Proteica/genética , Eletricidade Estática
20.
Chem Res Toxicol ; 30(11): 1956-1971, 2017 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-28881136

RESUMO

The ability for DNA polymerases (Pols) to overcome a variety of obstacles in its path to maintain genomic stability during replication is a complex endeavor. It requires the coordination of multiple Pols with differing specificities through molecular control and access to the replisome. Although a number of contacts directly between Pols and accessory proteins have been identified, forming the basis of a variety of holoenzyme complexes, the dynamics of Pol active site substitutions remain uncharacterized. Substitutions can occur externally by recruiting new Pols to replisome complexes through an "exchange" of enzyme binding or internally through a "switch" in the engagement of DNA from preformed associated enzymes contained within supraholoenzyme complexes. Models for how high fidelity (HiFi) replication Pols can be substituted by translesion synthesis (TLS) Pols at sites of damage during active replication will be discussed. These substitution mechanisms may be as diverse as the number of Pol families and types of damage; however, common themes can be recognized across species. Overall, Pol substitutions will be controlled by explicit protein contacts, complex multiequilibrium processes, and specific kinetic activities. Insight into how these dynamic processes take place and are regulated will be of utmost importance for our greater understanding of the specifics of TLS as well as providing for future novel chemotherapeutic and antimicrobial strategies.


Assuntos
Reparo do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Animais , Dano ao DNA , Replicação do DNA , DNA Polimerase Dirigida por DNA/química , Genoma , Humanos , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA