Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
2.
Cell Metab ; 30(1): 190-200.e6, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31105043

RESUMO

Mitochondrial abundance and function are tightly controlled during metabolic adaptation but dysregulated in pathological states such as diabetes, neurodegeneration, cancer, and kidney disease. We show here that translation of PGC1α, a key governor of mitochondrial biogenesis and oxidative metabolism, is negatively regulated by an upstream open reading frame (uORF) in the 5' untranslated region of its gene (PPARGC1A). We find that uORF-mediated translational repression is a feature of PPARGC1A orthologs from human to fly. Strikingly, whereas multiple inhibitory uORFs are broadly present in fish PPARGC1A orthologs, they are completely absent in the Atlantic bluefin tuna, an animal with exceptionally high mitochondrial content. In mice, an engineered mutation disrupting the PPARGC1A uORF increases PGC1α protein levels and oxidative metabolism and confers protection from acute kidney injury. These studies identify a translational regulatory element governing oxidative metabolism and highlight its potential contribution to the evolution of organismal mitochondrial function.


Assuntos
Regiões 5' não Traduzidas/genética , Fases de Leitura Aberta/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Animais , Dípteros , Feminino , Células HEK293 , Humanos , Imunoprecipitação , Masculino , Camundongos , Mutação/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Filogenia , Processamento de Proteína Pós-Traducional/genética , Atum , Peixe-Zebra
3.
JCI Insight ; 52019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-30870143

RESUMO

Because injured mitochondria can accelerate cell death through the elaboration of oxidative free radicals and other mediators, it is striking that proliferator gamma coactivator 1-alpha (PGC1α), a stimulator of increased mitochondrial abundance, protects stressed renal cells instead of potentiating injury. Here we report that PGC1α's induction of lysosomes via transcription factor EB (TFEB) may be pivotal for kidney protection. CRISPR and stable gene transfer showed that PGC1α knockout tubular cells were sensitized to the genotoxic stressor cisplatin whereas transgenic cells were protected. The biosensor mtKeima unexpectedly revealed that cisplatin blunts mitophagy both in cells and mice. PGC1α not only counteracted this effect but also raised basal mitophagy, as did the downstream mediator nicotinamide adenine dinucleotide (NAD+). PGC1α did not consistently affect known autophagy pathways modulated by cisplatin. Instead RNA sequencing identified coordinated regulation of lysosomal biogenesis via TFEB. This effector pathway was sufficiently important that inhibition of TFEB or lysosomes unveiled a striking harmful effect of excess PGC1α in cells and conditional mice. These results uncover an unexpected effect of cisplatin on mitophagy and PGC1α's exquisite reliance on lysosomes for kidney protection. Finally, the data illuminate TFEB as a novel target for renal tubular stress resistance.


Assuntos
Injúria Renal Aguda/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Cisplatino/toxicidade , Túbulos Renais/metabolismo , Lisossomos/metabolismo , Mitocôndrias/metabolismo , Biogênese de Organelas , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/metabolismo , Animais , Autofagia/efeitos dos fármacos , Autofagia/genética , Sistemas CRISPR-Cas , Técnicas de Transferência de Genes , Túbulos Renais/citologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Mitofagia/genética , NAD/metabolismo , Estresse Oxidativo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Análise de Sequência de RNA
4.
Nat Med ; 24(9): 1351-1359, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30127395

RESUMO

Nicotinamide adenine dinucleotide (NAD+) extends longevity in experimental organisms, raising interest in its impact on human health. De novo NAD+ biosynthesis from tryptophan is evolutionarily conserved yet considered supplanted among higher species by biosynthesis from nicotinamide (NAM). Here we show that a bottleneck enzyme in de novo biosynthesis, quinolinate phosphoribosyltransferase (QPRT), defends renal NAD+ and mediates resistance to acute kidney injury (AKI). Following murine AKI, renal NAD+ fell, quinolinate rose, and QPRT declined. QPRT+/- mice exhibited higher quinolinate, lower NAD+, and higher AKI susceptibility. Metabolomics suggested an elevated urinary quinolinate/tryptophan ratio (uQ/T) as an indicator of reduced QPRT. Elevated uQ/T predicted AKI and other adverse outcomes in critically ill patients. A phase 1 placebo-controlled study of oral NAM demonstrated a dose-related increase in circulating NAD+ metabolites. NAM was well tolerated and was associated with less AKI. Therefore, impaired NAD+ biosynthesis may be a feature of high-risk hospitalizations for which NAD+ augmentation could be beneficial.


Assuntos
Injúria Renal Aguda/metabolismo , Vias Biossintéticas , NAD/biossíntese , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/urina , Idoso , Animais , Procedimentos Cirúrgicos Cardíacos , Humanos , Isquemia/urina , Camundongos , Pessoa de Meia-Idade , Niacinamida/administração & dosagem , Niacinamida/uso terapêutico , Pentosiltransferases/metabolismo , Projetos Piloto , Ácido Quinolínico/metabolismo , Ácido Quinolínico/urina , Resultado do Tratamento , Triptofano/urina
5.
Am J Physiol Renal Physiol ; 314(1): F1-F8, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28931521

RESUMO

Acute kidney injury (AKI) arising from diverse etiologies is characterized by mitochondrial dysfunction. The peroxisome proliferator-activated receptor γ coactivator-1alpha (PGC1α), a master regulator of mitochondrial biogenesis, has been shown to be protective in AKI. Interestingly, reduction of PGC1α has also been implicated in the development of diabetic kidney disease and renal fibrosis. The beneficial renal effects of PGC1α make it a prime target for therapeutics aimed at ameliorating AKI, forms of chronic kidney disease (CKD), and their intersection. This review summarizes the current literature on the relationship between renal health and PGC1α and proposes areas of future interest.


Assuntos
Injúria Renal Aguda/metabolismo , Nefropatias Diabéticas/metabolismo , Rim/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Insuficiência Renal Crônica/metabolismo , Injúria Renal Aguda/terapia , Animais , Nefropatias Diabéticas/terapia , Humanos , Biogênese de Organelas , Insuficiência Renal Crônica/terapia
6.
Nature ; 531(7595): 528-32, 2016 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-26982719

RESUMO

The energetic burden of continuously concentrating solutes against gradients along the tubule may render the kidney especially vulnerable to ischaemia. Acute kidney injury (AKI) affects 3% of all hospitalized patients. Here we show that the mitochondrial biogenesis regulator, PGC1α, is a pivotal determinant of renal recovery from injury by regulating nicotinamide adenine dinucleotide (NAD) biosynthesis. Following renal ischaemia, Pgc1α(-/-) (also known as Ppargc1a(-/-)) mice develop local deficiency of the NAD precursor niacinamide (NAM, also known as nicotinamide), marked fat accumulation, and failure to re-establish normal function. Notably, exogenous NAM improves local NAD levels, fat accumulation, and renal function in post-ischaemic Pgc1α(-/-) mice. Inducible tubular transgenic mice (iNephPGC1α) recapitulate the effects of NAM supplementation, including more local NAD and less fat accumulation with better renal function after ischaemia. PGC1α coordinately upregulates the enzymes that synthesize NAD de novo from amino acids whereas PGC1α deficiency or AKI attenuates the de novo pathway. NAM enhances NAD via the enzyme NAMPT and augments production of the fat breakdown product ß-hydroxybutyrate, leading to increased production of prostaglandin PGE2 (ref. 5), a secreted autacoid that maintains renal function. NAM treatment reverses established ischaemic AKI and also prevented AKI in an unrelated toxic model. Inhibition of ß-hydroxybutyrate signalling or prostaglandin production similarly abolishes PGC1α-dependent renoprotection. Given the importance of mitochondrial health in ageing and the function of metabolically active organs, the results implicate NAM and NAD as key effectors for achieving PGC1α-dependent stress resistance.


Assuntos
Injúria Renal Aguda/metabolismo , Rim/metabolismo , NAD/biossíntese , Fatores de Transcrição/metabolismo , Ácido 3-Hidroxibutírico/metabolismo , Injúria Renal Aguda/tratamento farmacológico , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Aminoácidos/metabolismo , Animais , Citocinas/metabolismo , Dinoprostona/biossíntese , Dinoprostona/metabolismo , Humanos , Isquemia/tratamento farmacológico , Isquemia/metabolismo , Rim/efeitos dos fármacos , Rim/fisiologia , Rim/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Niacinamida/deficiência , Niacinamida/farmacologia , Niacinamida/uso terapêutico , Nicotinamida Fosforribosiltransferase/metabolismo , Oxirredução , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Transdução de Sinais/efeitos dos fármacos , Estresse Fisiológico , Fatores de Transcrição/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA