Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Nat Commun ; 15(1): 2030, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448444

RESUMO

The genetic basis of human facial variation and craniofacial birth defects remains poorly understood. Distant-acting transcriptional enhancers control the fine-tuned spatiotemporal expression of genes during critical stages of craniofacial development. However, a lack of accurate maps of the genomic locations and cell type-resolved activities of craniofacial enhancers prevents their systematic exploration in human genetics studies. Here, we combine histone modification, chromatin accessibility, and gene expression profiling of human craniofacial development with single-cell analyses of the developing mouse face to define the regulatory landscape of facial development at tissue- and single cell-resolution. We provide temporal activity profiles for 14,000 human developmental craniofacial enhancers. We find that 56% of human craniofacial enhancers share chromatin accessibility in the mouse and we provide cell population- and embryonic stage-resolved predictions of their in vivo activity. Taken together, our data provide an expansive resource for genetic and developmental studies of human craniofacial development.


Assuntos
Cromatina , Sequências Reguladoras de Ácido Nucleico , Humanos , Animais , Camundongos , Cromatina/genética , Perfilação da Expressão Gênica , Genômica , Processamento de Proteína Pós-Traducional
2.
bioRxiv ; 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37425964

RESUMO

The genetic basis of craniofacial birth defects and general variation in human facial shape remains poorly understood. Distant-acting transcriptional enhancers are a major category of non-coding genome function and have been shown to control the fine-tuned spatiotemporal expression of genes during critical stages of craniofacial development1-3. However, a lack of accurate maps of the genomic location and cell type-specific in vivo activities of all craniofacial enhancers prevents their systematic exploration in human genetics studies. Here, we combined histone modification and chromatin accessibility profiling from different stages of human craniofacial development with single-cell analyses of the developing mouse face to create a comprehensive catalogue of the regulatory landscape of facial development at tissue- and single cell-resolution. In total, we identified approximately 14,000 enhancers across seven developmental stages from weeks 4 through 8 of human embryonic face development. We used transgenic mouse reporter assays to determine the in vivo activity patterns of human face enhancers predicted from these data. Across 16 in vivo validated human enhancers, we observed a rich diversity of craniofacial subregions in which these enhancers are active in vivo. To annotate the cell type specificities of human-mouse conserved enhancers, we performed single-cell RNA-seq and single-nucleus ATAC-seq of mouse craniofacial tissues from embryonic days e11.5 to e15.5. By integrating these data across species, we find that the majority (56%) of human craniofacial enhancers are functionally conserved in mice, providing cell type- and embryonic stage-resolved predictions of their in vivo activity profiles. Using retrospective analysis of known craniofacial enhancers in combination with single cell-resolved transgenic reporter assays, we demonstrate the utility of these data for predicting the in vivo cell type specificity of enhancers. Taken together, our data provide an expansive resource for genetic and developmental studies of human craniofacial development.

3.
Commun Biol ; 6(1): 435, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-37081156

RESUMO

Topologically associating domain (TAD) boundaries partition the genome into distinct regulatory territories. Anecdotal evidence suggests that their disruption may interfere with normal gene expression and cause disease phenotypes1-3, but the overall extent to which this occurs remains unknown. Here we demonstrate that targeted deletions of TAD boundaries cause a range of disruptions to normal in vivo genome function and organismal development. We used CRISPR genome editing in mice to individually delete eight TAD boundaries (11-80 kb in size) from the genome. All deletions examined resulted in detectable molecular or organismal phenotypes, which included altered chromatin interactions or gene expression, reduced viability, and anatomical phenotypes. We observed changes in local 3D chromatin architecture in 7 of 8 (88%) cases, including the merging of TADs and altered contact frequencies within TADs adjacent to the deleted boundary. For 5 of 8 (63%) loci examined, boundary deletions were associated with increased embryonic lethality or other developmental phenotypes. For example, a TAD boundary deletion near Smad3/Smad6 caused complete embryonic lethality, while a deletion near Tbx5/Lhx5 resulted in a severe lung malformation. Our findings demonstrate the importance of TAD boundary sequences for in vivo genome function and reinforce the critical need to carefully consider the potential pathogenicity of noncoding deletions affecting TAD boundaries in clinical genetics screening.


Assuntos
Cromatina , Genoma , Animais , Camundongos , Cromatina/genética , Fenótipo
4.
Cell Rep ; 40(12): 111400, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36130500

RESUMO

Heart disease is associated with re-expression of key transcription factors normally active only during prenatal development of the heart. However, the impact of this reactivation on the regulatory landscape in heart disease is unclear. Here, we use RNA-seq and ChIP-seq targeting a histone modification associated with active transcriptional enhancers to generate genome-wide enhancer maps from left ventricle tissue from up to 26 healthy controls, 18 individuals with idiopathic dilated cardiomyopathy (DCM), and five fetal hearts. Healthy individuals have a highly reproducible epigenomic landscape, consisting of more than 33,000 predicted heart enhancers. In contrast, we observe reproducible disease-associated changes in activity at 6,850 predicted heart enhancers. Combined analysis of adult and fetal samples reveals that the heart disease epigenome and transcriptome both acquire fetal-like characteristics, with 3,400 individual enhancers sharing fetal regulatory properties. We also provide a comprehensive data resource (http://heart.lbl.gov) for the mechanistic exploration of DCM etiology.


Assuntos
Cardiomiopatia Dilatada , Elementos Facilitadores Genéticos , Adulto , Elementos Facilitadores Genéticos/genética , Epigenoma , Epigenômica , Humanos , Fatores de Transcrição
5.
Methods Mol Biol ; 2403: 147-186, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34913122

RESUMO

Embryonic morphogenesis is strictly dependent on tight spatiotemporal control of developmental gene expression, which is typically achieved through the concerted activity of multiple enhancers driving cell type-specific expression of a target gene. Mammalian genomes are organized in topologically associated domains, providing a preferred environment and framework for interactions between transcriptional enhancers and gene promoters. While epigenomic profiling and three-dimensional chromatin conformation capture have significantly increased the accuracy of identifying enhancers, assessment of subregional enhancer activities via transgenic reporter assays in mice remains the gold standard for assigning enhancer activity in vivo. Once this activity is defined, the ideal method to explore the functional necessity of a transcriptional enhancer and its contribution to target gene dosage and morphological or physiological processes is deletion of the enhancer sequence from the mouse genome. Here we present detailed protocols for efficient introduction of enhancer-reporter transgenes and CRISPR-mediated genomic deletions into the mouse genome, including a step-by-step guide for pronuclear microinjection of fertilized mouse eggs. We provide instructions for the assembly and genomic integration of enhancer-reporter cassettes that have been used for validation of thousands of putative enhancer sequences accessible through the VISTA enhancer browser, including a recently published method for robust site-directed transgenesis at the H11 safe-harbor locus. Together, these methods enable rapid and large-scale assessment of enhancer activities and sequence variants in mice, which is essential to understand mammalian genome function and genetic diseases.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Edição de Genes , Animais , Elementos Facilitadores Genéticos , Técnicas de Transferência de Genes , Genômica , Camundongos
6.
Nat Genet ; 53(4): 521-528, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33782603

RESUMO

Ultraconserved enhancer sequences show perfect conservation between human and rodent genomes, suggesting that their functions are highly sensitive to mutation. However, current models of enhancer function do not sufficiently explain this extreme evolutionary constraint. We subjected 23 ultraconserved enhancers to different levels of mutagenesis, collectively introducing 1,547 mutations, and examined their activities in transgenic mouse reporter assays. Overall, we find that the regulatory properties of ultraconserved enhancers are robust to mutation. Upon mutagenesis, nearly all (19/23, 83%) still functioned as enhancers at one developmental stage, as did most of those tested again later in development (5/9, 56%). Replacement of endogenous enhancers with mutated alleles in mice corroborated results of transgenic assays, including the functional resilience of ultraconserved enhancers to mutation. Our findings show that the currently known activities of ultraconserved enhancers do not necessarily require the perfect conservation observed in evolution and suggest that additional regulatory or other functions contribute to their sequence constraint.


Assuntos
Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Mutação , Fatores de Transcrição/genética , Alelos , Animais , Sequência de Bases , Sequência Conservada , Embrião de Mamíferos , Humanos , Camundongos , Mutagênese Sítio-Dirigida , Ratos , Fatores de Transcrição/metabolismo
7.
Front Neurosci ; 14: 336, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32425745

RESUMO

Blood Oxygen Level Dependent (BOLD) functional MRI is a complex neurovascular signal whose magnitude depends on baseline physiological factors such as cerebral blood flow (CBF). Because baseline CBF varies across the brain and is altered with aging, the interpretation of stand-alone aging-related BOLD changes can be misleading. The primary objective of this study was to develop a methodology that combines task fMRI and arterial spin labeling (ASL) techniques to sensitize task-induced BOLD activity by covarying out the baseline physiology (i.e., CBF) in an aging model. We recruited 11 younger and 13 older healthy participants who underwent ASL and an overt language fMRI task (semantic category member generation). We measured in-scanner language performance to investigate the effect of BOLD sensitization on BOLD-behavior relationships. The results demonstrate that our correction approach is effective at enhancing the specificity and sensitivity of the BOLD signal in both groups. In addition, the correction strengthens the statistical association between task BOLD activity and behavioral performance. Although CBF has inherent age dependence, our results show that retaining the age factor within CBF aides in greater sensitization of task fMRI signals. From a cognitive standpoint, compared to young adults, the older participants showed a delayed domain-general language-related task activity possibly due to compromised vessel compliance. Further, assessment of functional evolution of corrected BOLD activity revealed biphasic BOLD dynamics in both groups where BOLD deactivation may reflect greater semantic demand or increased premium on domain general executive functioning in response to task difficulty. Although it was promising to note that the predictability of behavior using the proposed methodology outperforms other methodologies (i.e., no correction and normalization by division), and provides moderate stability and adequate power, further work with a larger cohort and other task designs is necessary to improve the stability of predicting associated behavior. In summary, we recommend correction of task fMRI signals by covarying out baseline CBF especially when comparing groups with different neurovascular properties. Given that ASL and BOLD fMRI are well established and widely employed techniques, our proposed multi-modal methodology can be readily implemented into data processing pipelines to obtain more accurate BOLD activation maps.

8.
Cell ; 180(6): 1262-1271.e15, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32169219

RESUMO

Establishing causal links between non-coding variants and human phenotypes is an increasing challenge. Here, we introduce a high-throughput mouse reporter assay for assessing the pathogenic potential of human enhancer variants in vivo and examine nearly a thousand variants in an enhancer repeatedly linked to polydactyly. We show that 71% of all rare non-coding variants previously proposed as causal lead to reporter gene expression in a pattern consistent with their pathogenic role. Variants observed to alter enhancer activity were further confirmed to cause polydactyly in knockin mice. We also used combinatorial and single-nucleotide mutagenesis to evaluate the in vivo impact of mutations affecting all positions of the enhancer and identified additional functional substitutions, including potentially pathogenic variants hitherto not observed in humans. Our results uncover the functional consequences of hundreds of mutations in a phenotype-associated enhancer and establish a widely applicable strategy for systematic in vivo evaluation of human enhancer variants.


Assuntos
Elementos Facilitadores Genéticos/genética , Ensaios de Triagem em Larga Escala/métodos , Polidactilia/genética , Animais , Elementos Facilitadores Genéticos/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Técnicas de Introdução de Genes/métodos , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Camundongos , Mutação , Fenótipo , Polidactilia/metabolismo , RNA não Traduzido/genética
9.
J Clin Invest ; 129(10): 4124-4137, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31265435

RESUMO

Pancreatic beta cells (ß-cells) differentiate during fetal life, but only postnatally acquire the capacity for glucose-stimulated insulin secretion (GSIS). How this happens is not clear. In exploring what molecular mechanisms drive the maturation of ß-cell function, we found that the control of cellular signaling in ß-cells fundamentally switched from the nutrient sensor target of rapamycin (mTORC1) to the energy sensor 5'-adenosine monophosphate-activated protein kinase (AMPK), and that this was critical for functional maturation. Moreover, AMPK was activated by the dietary transition taking place during weaning, and this in turn inhibited mTORC1 activity to drive the adult ß-cell phenotype. While forcing constitutive mTORC1 signaling in adult ß-cells relegated them to a functionally immature phenotype with characteristic transcriptional and metabolic profiles, engineering the switch from mTORC1 to AMPK signaling was sufficient to promote ß-cell mitochondrial biogenesis, a shift to oxidative metabolism, and functional maturation. We also found that type 2 diabetes, a condition marked by both mitochondrial degeneration and dysregulated GSIS, was associated with a remarkable reversion of the normal AMPK-dependent adult ß-cell signature to a more neonatal one characterized by mTORC1 activation. Manipulating the way in which cellular nutrient signaling pathways regulate ß-cell metabolism may thus offer new targets to improve ß-cell function in diabetes.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Insulina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Transdução de Sinais , Proteínas Quinases Ativadas por AMP/genética , Animais , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Secreção de Insulina/genética , Células Secretoras de Insulina/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Camundongos , Camundongos Knockout
10.
Nat Cell Biol ; 21(6): 792, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30914825

RESUMO

In the version of this article originally published, the Gene Expression Omnibus (GEO) accession number listed in the data availability section was incorrectly given as GSE10979 instead of GSE109795. The sentence should read "RNA-seq data that support the findings of this study have been deposited in the Gene Expression Omnibus (GEO) under accession code GSE109795," and the code should link to https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE109795. The error has been corrected in the HTML and PDF versions of the paper.

11.
Nat Cell Biol ; 21(2): 263-274, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30710150

RESUMO

Despite advances in the differentiation of insulin-producing cells from human embryonic stem cells, the generation of mature functional ß cells in vitro has remained elusive. To accomplish this goal, we have developed cell culture conditions to closely mimic events occurring during pancreatic islet organogenesis and ß cell maturation. In particular, we have focused on recapitulating endocrine cell clustering by isolating and reaggregating immature ß-like cells to form islet-sized enriched ß-clusters (eBCs). eBCs display physiological properties analogous to primary human ß cells, including robust dynamic insulin secretion, increased calcium signalling in response to secretagogues, and improved mitochondrial energization. Notably, endocrine cell clustering induces metabolic maturation by driving mitochondrial oxidative respiration, a process central to stimulus-secretion coupling in mature ß cells. eBCs display glucose-stimulated insulin secretion as early as three days after transplantation in mice. In summary, replicating aspects of endocrine cell clustering permits the generation of stem-cell-derived ß cells that resemble their endogenous counterparts.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias/citologia , Células Endócrinas/citologia , Fibroblastos/citologia , Células-Tronco Embrionárias Humanas/citologia , Células Secretoras de Insulina/citologia , Animais , Células Cultivadas , Células-Tronco Embrionárias/fisiologia , Células Endócrinas/fisiologia , Fibroblastos/fisiologia , Glucose/farmacologia , Células-Tronco Embrionárias Humanas/fisiologia , Humanos , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/fisiologia , Ilhotas Pancreáticas/citologia , Camundongos , Mitocôndrias/metabolismo
12.
Brain Cogn ; 122: 52-58, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29471283

RESUMO

Functional connectivity using task-residual data capitalizes on remaining variance after mean task-related signal is removed from a time series. The degree of network specificity in language and attention domains featured by task-residual and resting-state data types were compared. Functional connectivity based on task-residual data evidenced stronger laterality of the language and attention connections and thus greater network specificity compared to resting-state functional connectivity of the same connections. Covariance between network nodes of task-residuals may thus reflect the degree to which two regions are coordinated in their specific activity, rather than a general shared co-activation. Task-residual functional connectivity provides complementary data to that of resting-state, emphasizing network relationships during task engagement.


Assuntos
Atenção/fisiologia , Encéfalo/fisiologia , Idioma , Rede Nervosa/fisiologia , Adolescente , Adulto , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Feminino , Lateralidade Funcional/fisiologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/diagnóstico por imagem , Adulto Jovem
13.
Neuropsychology ; 31(8): 900-920, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28857600

RESUMO

OBJECTIVE: The last 25 years have seen profound changes in neurocognitive rehabilitation that continue to motivate its evolution. Although the concept of nervous system plasticity was discussed by William James (1890), the foundation for experience-based plasticity had not reached the critical empirical mass to seriously impact rehabilitation research until after 1992. The objective of this review is to describe how the emergence of neural plasticity has changed neurocognitive rehabilitation research. METHOD: The important developments included (a) introduction of a widely available tool that could measure brain plasticity (i.e., functional MRI); (b) development of new structural imaging techniques that could define limits of and opportunities for neural plasticity; (c) deployment of noninvasive brain stimulation to leverage neural plasticity for rehabilitation; (d) growth of a literature indicating that exercise has positively impacts neural plasticity, especially for older persons; and (e) enhancement of neural plasticity by creating interventions that generalize beyond the boundaries of treatment activities. Given the massive literature, each of these areas is developed by example. RESULTS: The expanding influence of neural plasticity has provided new models and tools for neurocognitive rehabilitation in neural injuries and disorders, as well as methods for measuring neural plasticity and predicting its limits and opportunities. Early clinical trials have provided very encouraging results. CONCLUSION: Now that neural plasticity has gained a firm foothold, it will continue to influence the evolution of neurocognitive rehabilitation research for the next 25 years and advance rehabilitation for neural injuries and disease. (PsycINFO Database Record


Assuntos
Encefalopatias/reabilitação , Lesões Encefálicas/reabilitação , Encéfalo/fisiologia , Reabilitação Neurológica/tendências , Plasticidade Neuronal/fisiologia , Pesquisa de Reabilitação/tendências , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Encefalopatias/diagnóstico por imagem , Encefalopatias/fisiopatologia , Lesões Encefálicas/diagnóstico por imagem , Lesões Encefálicas/fisiopatologia , Neuroimagem Funcional , Humanos , Imageamento por Ressonância Magnética , Recuperação de Função Fisiológica , Reabilitação do Acidente Vascular Cerebral , Estimulação Transcraniana por Corrente Contínua
14.
Alcohol Clin Exp Res ; 40(9): 1865-73, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27459715

RESUMO

BACKGROUND: Cue-evoked drug-seeking behavior likely depends on interactions between frontal activity and ventral striatal (VST) dopamine (DA) transmission. Using [(11) C]raclopride (RAC) positron emission tomography (PET), we previously demonstrated that beer flavor (absent intoxication) elicited VST DA release in beer drinkers, inferred by RAC displacement. Here, a subset of subjects from this previous RAC-PET study underwent a similar paradigm during functional magnetic resonance imaging (fMRI) to test how orbitofrontal cortex (OFC) and VST blood oxygenation level-dependent (BOLD) responses to beer flavor are related to VST DA release and motivation to drink. METHODS: Male beer drinkers (n = 28, age = 24 ± 2, drinks/wk = 16 ± 10) from our previous PET study participated in a similar fMRI paradigm wherein subjects tasted their most frequently consumed brand of beer and Gatorade(®) (appetitive control). We tested for correlations between BOLD activation in fMRI and VST DA responses in PET, and drinking-related variables. RESULTS: Compared to Gatorade, beer flavor increased wanting and desire to drink, and induced BOLD responses in bilateral OFC and right VST. Wanting and desire to drink correlated with both right VST and medial OFC BOLD activation to beer flavor. Like the BOLD findings, beer flavor (relative to Gatorade) again induced right VST DA release in this fMRI subject subset, but there was no correlation between DA release and the magnitude of BOLD responses in frontal regions of interest. CONCLUSIONS: Both imaging modalities showed a right-lateralized VST response (BOLD and DA release) to a drug-paired conditioned stimulus, whereas fMRI BOLD responses in the VST and medial OFC also reflected wanting and desire to drink. The data suggest the possibility that responses to drug-paired cues may be rightward biased in the VST (at least in right-handed males) and that VST and OFC responses in this gustatory paradigm reflect stimulus wanting.


Assuntos
Cerveja , Dopamina/metabolismo , Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons/métodos , Córtex Pré-Frontal/metabolismo , Estriado Ventral/metabolismo , Adulto , Consumo de Bebidas Alcoólicas/metabolismo , Consumo de Bebidas Alcoólicas/psicologia , Sinais (Psicologia) , Antagonistas de Dopamina/metabolismo , Aromatizantes/administração & dosagem , Humanos , Masculino , Córtex Pré-Frontal/efeitos dos fármacos , Racloprida/metabolismo , Estriado Ventral/efeitos dos fármacos , Adulto Jovem
15.
Front Hum Neurosci ; 9: 307, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26074807

RESUMO

The effects of aging on rehabilitation of aging-related diseases are rarely a design consideration in rehabilitation research. In this brief review we present strong coincidental evidence from these two fields suggesting that deficits in aging-related disease or injury are compounded by the interaction between aging-related brain changes and disease-related brain changes. Specifically, we hypothesize that some aphasia, motor, and neglect treatments using repetitive transcranial magnetic stimulation (rTMS) or transcranial direct current stimulation (tDCS) in stroke patients may address the aging side of this interaction. The importance of testing this hypothesis and addressing the larger aging by aging-related disease interaction is discussed. Underlying mechanisms in aging that most likely are relevant to rehabilitation of aging-related diseases also are covered.

16.
Mol Endocrinol ; 29(7): 963-77, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25942106

RESUMO

The activins were discovered and named based on their abilities to stimulate FSH secretion and FSHß (Fshb) subunit expression by pituitary gonadotrope cells. According to subsequent in vitro observations, activins also stimulate the transcription of the GnRH receptor (Gnrhr) and the activin antagonist, follistatin (Fst). Thus, not only do activins stimulate FSH directly, they have the potential to regulate both FSH and LH indirectly by modulating gonadotrope sensitivity to hypothalamic GnRH. Moreover, activins may negatively regulate their own actions by stimulating the production of one of their principal antagonists. Here, we describe our current understanding of the mechanisms through which activins regulate Fshb, Gnrhr, and Fst transcription in vitro. The activin signaling molecules SMAD3 and SMAD4 appear to partner with the winged-helix/forkhead transcription factor, forkhead box L2 (FOXL2), to regulate expression of all 3 genes. However, in vivo data paint a different picture. Although conditional deletion of Foxl2 and/or Smad4 in murine gonadotropes produces impairments in FSH synthesis and secretion as well as in pituitary Fst expression, Gnrhr mRNA levels are either unperturbed or increased in these animals. Surprisingly, gonadotrope-specific deletion of Smad3 alone or with Smad2 does not impair FSH production or fertility; however, mice harboring these mutations may express a DNA binding-deficient, but otherwise functional, SMAD3 protein. Collectively, the available data firmly establish roles for FOXL2 and SMAD4 in Fshb and Fst expression in gonadotrope cells, whereas SMAD3's role requires further investigation. Gnrhr expression, in contrast, appears to be FOXL2, SMAD4, and, perhaps, activin independent in vivo.


Assuntos
Ativinas/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Gonadotrofos/metabolismo , Transdução de Sinais , Proteínas Smad/metabolismo , Animais , Regulação da Expressão Gênica , Humanos , Transdução de Sinais/genética
17.
Psychopharmacology (Berl) ; 232(5): 861-70, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25163422

RESUMO

RATIONALE: Although striatal dopamine (DA) is important in alcohol abuse, the nature of DA release during actual alcohol drinking is unclear, since drinking includes self-administration of both conditioned flavor stimuli (CS) of the alcoholic beverage and subsequent intoxication, the unconditioned stimulus (US). OBJECTIVES: Here, we used a novel self-administration analog to distinguish nucleus accumbens (NAcc) DA responses specific to the CS and US. METHODS: Right-handed male heavy drinkers (n = 26) received three positron emission tomography (PET) scans with the D2/D3 radioligand [(11)C]raclopride (RAC) and performed a pseudo self-administration task that separately administered a flavor CS of either a habitually consumed beer or the appetitive control Gatorade®, concomitant with the US of ethanol intoxication (0.06 g/dL intravenous (IV) administration) or IV saline. Scan conditions were Gatorade flavor + saline (Gat&Sal), Gatorade flavor + ethanol (Gat&Eth), and beer flavor + ethanol (Beer&Eth). RESULTS: Ethanol (US) reduced RAC binding (inferring DA release) in the left (L) NAcc [Gat&Sal > Gat&Eth]. Beer flavor (CS) increased DA in the right (R) NAcc [Gat&Eth > Beer&Eth]. The combination of beer flavor and ethanol (CS + US), [Gat&Sal > Beer&Eth], induced DA release in bilateral NAcc. Self-reported intoxication during scanning correlated with L NAcc DA release. Relative to saline, infusion of ethanol increased alcoholic drink wanting. CONCLUSIONS: Our findings suggest lateralized DA function in the NAcc, with L NAcc DA release most reflecting intoxication, R NAcc DA release most reflecting the flavor CS, and the conjoint CS + US producing a bilateral NAcc response.


Assuntos
Intoxicação Alcoólica/metabolismo , Cerveja , Dopamina/metabolismo , Etanol/administração & dosagem , Núcleo Accumbens/efeitos dos fármacos , Adulto , Intoxicação Alcoólica/diagnóstico por imagem , Condicionamento Psicológico/efeitos dos fármacos , Corpo Estriado/diagnóstico por imagem , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Antagonistas de Dopamina/farmacologia , Humanos , Masculino , Núcleo Accumbens/diagnóstico por imagem , Núcleo Accumbens/metabolismo , Racloprida/farmacologia , Cintilografia , Autoadministração , Adulto Jovem
18.
PLoS One ; 8(10): e76642, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24098544

RESUMO

Forkhead box L2 (Foxl2), a member of the forkhead transcription factor family, plays important roles in pituitary follicle-stimulating hormone synthesis and in ovarian maintenance and function. Mutations in the human FOXL2 gene cause eyelid malformations and premature ovarian failure. FOXL2/Foxl2 is expressed in pituitary gonadotrope and thyrotrope cells, the perioptic mesenchyme of the developing eyelid, and ovarian granulosa cells. The mechanisms governing this cell-restricted expression have not been described. We mapped the Foxl2 transcriptional start site in immortalized murine gonadotrope-like cells, LßT2, by 5' rapid amplification of cDNA ends and then PCR amplified approximately 1 kb of 5' flanking sequence from murine genomic DNA. When ligated into a reporter plasmid, the proximal promoter conferred luciferase activity in both homologous (LßT2) and, unexpectedly, heterologous (NIH3T3) cells. In silico analyses identified a CpG island in the proximal promoter and 5' untranslated region, suggesting that Foxl2 transcription might be regulated epigenetically. Indeed, pyrosequencing and quantitative analysis of DNA methylation using real-time PCR revealed Foxl2 proximal promoter hypomethylation in homologous compared to some, though not all, heterologous cell lines. The promoter was also hypomethylated in purified murine gonadotropes. In vitro promoter methylation completely silenced reporter activity in heterologous and homologous cells. Collectively, the data suggest that differential proximal promoter DNA methylation may contribute to cell-specific Foxl2 expression in some cellular contexts. However, gonadotrope-specific expression of the gene cannot be explained by promoter hypomethylation alone.


Assuntos
Regiões 5' não Traduzidas , Ilhas de CpG , Epigênese Genética , Fatores de Transcrição Forkhead/genética , Gonadotrofos/metabolismo , Regiões Promotoras Genéticas , Animais , Sequência de Bases , Linhagem Celular Transformada , Metilação de DNA , Feminino , Proteína Forkhead Box L2 , Fatores de Transcrição Forkhead/metabolismo , Gonadotrofos/citologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Células NIH 3T3 , Especificidade de Órgãos , Tireotrofos/citologia , Tireotrofos/metabolismo
19.
Neuropsychopharmacology ; 38(9): 1617-24, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23588036

RESUMO

Striatal dopamine (DA) is increased by virtually all drugs of abuse, including alcohol. However, drug-associated cues are also known to provoke striatal DA transmission- a phenomenon linked to the motivated behaviors associated with addiction. To our knowledge, no one has tested if alcohol's classically conditioned flavor cues, in the absence of a significant pharmacologic effect, are capable of eliciting striatal DA release in humans. Employing positron emission tomography (PET), we hypothesized that beer's flavor alone can reduce the binding potential (BP) of [(11)C]raclopride (RAC; a reflection of striatal DA release) in the ventral striatum, relative to an appetitive flavor control. Forty-nine men, ranging from social to heavy drinking, mean age 25, with a varied family history of alcoholism underwent two [(11)C]RAC PET scans: one while tasting beer, and one while tasting Gatorade. Relative to the control flavor of Gatorade, beer flavor significantly increased self-reported desire to drink, and reduced [(11)C]RAC BP, indicating that the alcohol-associated flavor cues induced DA release. BP reductions were strongest in subjects with first-degree alcoholic relatives. These results demonstrate that alcohol-conditioned flavor cues can provoke ventral striatal DA release, absent significant pharmacologic effects, and that the response is strongest in subjects with a greater genetic risk for alcoholism. Striatal DA responses to salient alcohol cues may thus be an inherited risk factor for alcoholism.


Assuntos
Alcoolismo/genética , Alcoolismo/psicologia , Cerveja , Corpo Estriado/metabolismo , Dopamina/metabolismo , Saúde da Família , Adulto , Comportamento Aditivo/metabolismo , Comportamento Aditivo/psicologia , Condicionamento Clássico , Sinais (Psicologia) , Antagonistas de Dopamina , Neuroimagem Funcional , Predisposição Genética para Doença/genética , Humanos , Masculino , Racloprida
20.
Biol Reprod ; 88(3): 78, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23426431

RESUMO

Activins were discovered and, in fact, named more than a quarter century ago based on their abilities to stimulate pituitary follicle-stimulating hormone (FSH) synthesis and secretion. However, it is only in the last decade that we have finally come to understand their underlying mechanisms of action in gonadotroph cells. In this minireview, we chronicle the research that led to the recent discovery of forkhead box L2 (FOXL2) as an essential mediator of activin-regulated FSH beta subunit (Fshb) transcription in vitro and in vivo.


Assuntos
Ativinas/metabolismo , Subunidade beta do Hormônio Folículoestimulante/biossíntese , Fatores de Transcrição Forkhead/metabolismo , Animais , Proteína Forkhead Box L2 , Regulação da Expressão Gênica , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA