Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Omega ; 9(18): 20056-20065, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38737018

RESUMO

Graphene quantum dots have been widely studied owing to their unique optical, electrical, and optoelectrical properties for various applications in solar devices. Here, we investigate the optoelectronic properties of hexagonal and nitrogen-doped graphene quantum dots using the first-principles method. We find that doping nitrogen atoms to hexagonal graphene quantum dots results in a significant red shift toward the visible light range as compared to that of the pristine graphene quantum dots, and the doped nitrogen atoms also induce a clear signature of anisotropy of the frontier orbitals induced by the electron correlation between the doped nitrogen atoms and their adjacent carbon atoms. Moreover, time-dependent density functional theory calculations with the M06-2X functional and 6-311++G(d,p) basis set reproduce well the experimental absorption spectra reported recently. These results provide us with a novel approach for more systematic investigations on next-generation solar devices with assembled quantum dots to improve their light selectivity as well as efficiency.

2.
RSC Adv ; 14(7): 4904-4916, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38323020

RESUMO

Graphene-based sensors exhibit high sensitivity, fast response, and good selectivity towards toxic gases but have low mechanical stability. The combination of graphene and two-dimensional hexagonal boron nitride (h-BN) is expected to increase the mechanical stability and enhance the adsorption performance of these gas sensors. Using first-principles calculations, we demonstrate that two-dimensional graphene/h-BN double layers can be used as good substrates for gas sensors with a small lattice mismatch of only 1.78%. Moreover, the presence of a h-BN layer widens the band gap by about 38 meV and considerably increases the work function, thus positively affecting the gas adsorption performance. Although these graphene/h-BN heterostructures do not change the physical adsorption mechanism of these sensors concerning the graphene-based materials, these bilayers significantly enhance the sensitivity of these sensors for detecting CO2, CO, NO, and NO2 toxic gases. Particularly, compared to the pristine graphene-based materials, the gas adsorption energies of graphene/h-BN increased by up to 13.78% for the adsorption of NO, and the shortest distances between the graphene/h-BN substrates and adsorbed gas molecules decreased. We also show that the graphene/h-BN heterostructure is more selective towards NOx gases while more inert towards COx gases, based on the different amounts of charge transferred from the substrate to the adsorbed gas molecules. Using the non-equilibrium Green functions in the context of density functional theory, we quantitatively associated these charge transfers with the reduction of the current passing through these scattering regions. These results demonstrate that graphene/h-BN heterostructures can be exploited as highly sensitive and selective room-temperature gas sensors for detecting toxic gases.

3.
ACS Omega ; 9(2): 2302-2313, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38250431

RESUMO

The adsorption mechanism of individual volatile organic compounds (VOCs) on the surface of graphene is investigated using nonempirical van der Waals (vdW) density functional theory. The VOCs chosen as adsorbates are ethanol, benzene, and toluene, which are found in the exhaled breath of lung cancer patients. The most energetically favorable configurations of the adsorbed systems, adsorption energy profiles, charge transfer, and work function are calculated. The fundamental insight into the interactions between the considered VOC molecules and graphene through molecular doping, i.e., charge transfer, is estimated. It is found that the adsorption energy is highly sensitive to the vdW functionals. Adsorption energies calculated by revPBE-vdW are in good agreement with the available experimental data, and the revPBE-vdW functional can cover well the physical phenomena behind the adsorption of these VOCs on graphene. Bader charge analysis shows that 0.064, 0.042, and 0.061e of charge were transferred from the graphene surface to ethanol, benzene, and toluene, respectively. All of the considered VOCs act as electron acceptors from graphene. By analyzing the electronic structure of the adsorption systems, we found that the energy level of the highest occupied molecular orbitals of these considered VOCs is shifted backward toward the Fermi level. The interaction of the VOCs with the π and π* states of the C atoms in graphene breaks the symmetry of graphene, leading to the opening of a band gap at the Fermi level. The adsorption of these considered VOCs onto the pristine graphene produces a band gap of 5-12 meV.

4.
Pathogens ; 10(11)2021 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-34832634

RESUMO

The high antigenic diversity of porcine epidemic diarrhea virus (PEDV) means that porcine epidemic diarrhea (PED) is a challenge for the global pig industry. Understanding the circulation of the virus to determine an optimal vaccine strategy is important in controlling the disease. In this study, we describe the genetic diversity of circulating PEDV based on the full sequences of spike genes of eight positive samples collected in Vietnam since 2018. Additionally, we developed a live attenuated vaccine candidate from the cell-adapted PEDV2 strain, which was continuously passaged until level 103 in VERO-CCL81 cells. PEDV2-p103, which belongs to the emerging non-S INDEL cluster, exhibited low virus shedding, did not induce lesions in the small intestine of challenged piglets, and had a high titer in the VERO-CCL81 cell at 48 h post-infection. These results suggest that the PEDV2-p103 strain could be a potential oral attenuated vaccine, and its immunogenicity and efficacy should be further assessed through in vivo tests.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA