Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Blood Adv ; 8(2): 261-275, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38048400

RESUMO

ABSTRACT: RNA-binding proteins (RBPs) are emerging as a novel class of therapeutic targets in cancer, including in leukemia, given their important role in posttranscriptional gene regulation, and have the unexplored potential to be combined with existing therapies. The RBP insulin-like growth factor 2 messenger RNA-binding protein 3 (IGF2BP3) has been found to be a critical regulator of MLL-AF4 leukemogenesis and represents a promising therapeutic target. Here, we study the combined effects of targeting IGF2BP3 and menin-MLL interaction in MLL-AF4-driven leukemia in vitro and in vivo, using genetic inhibition with CRISPR-Cas9-mediated deletion of Igf2bp3 and pharmacologic inhibition of the menin-MLL interaction with multiple commercially available inhibitors. Depletion of Igf2bp3 sensitized MLL-AF4 leukemia to the effects of menin-MLL inhibition on cell growth and leukemic initiating cells in vitro. Mechanistically, we found that both Igf2bp3 depletion and menin-MLL inhibition led to increased differentiation in vitro and in vivo, seen in functional readouts and by gene expression analyses. IGF2BP3 knockdown had a greater effect on increasing survival and attenuating disease than pharmacologic menin-MLL inhibition with small molecule MI-503 alone and showed enhanced antileukemic effects in combination. Our work shows that IGF2BP3 is an oncogenic amplifier of MLL-AF4-mediated leukemogenesis and a potent therapeutic target, providing a paradigm for targeting leukemia at both the transcriptional and posttranscriptional level.


Assuntos
Leucemia , Proteína de Leucina Linfoide-Mieloide , Humanos , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Leucemia/tratamento farmacológico , Leucemia/genética , Leucemia/metabolismo , Fatores de Transcrição , Diferenciação Celular , Proteínas de Fusão Oncogênica/genética
2.
J Exp Clin Cancer Res ; 42(1): 231, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37670323

RESUMO

BACKGROUND: Acute lymphoblastic leukemia (ALL) is the most common pediatric hematological malignancy, with ETV6::RUNX1 being the most prevalent translocation whose exact pathogenesis remains unclear. IGF2BP1 (Insulin-like Growth Factor 2 Binding Protein 1) is an oncofetal RNA binding protein seen to be specifically overexpressed in ETV6::RUNX1 positive B-ALL. In this study, we have studied the mechanistic role of IGF2BP1 in leukemogenesis and its synergism with the ETV6::RUNX1 fusion protein. METHODS: Gene expression was analyzed from patient bone marrow RNA using Real Time RT-qPCR. Knockout cell lines were created using CRISPR-Cas9 based lentiviral vectors. RNA-Seq and RNA Immunoprecipitation sequencing (RIP-Seq) after IGF2BP1 pulldown were performed using the Illumina platform. Mouse experiments were done by retroviral overexpression of donor HSCs followed by lethal irradiation of recipients using a bone marrow transplant model. RESULTS: We observed specific overexpression of IGF2BP1 in ETV6::RUNX1 positive patients in an Indian cohort of pediatric ALL (n=167) with a positive correlation with prednisolone resistance. IGF2BP1 expression was essential for tumor cell survival in multiple ETV6::RUNX1 positive B-ALL cell lines. Integrated analysis of transcriptome sequencing after IGF2BP1 knockout and RIP-Seq after IGF2BP1 pulldown in Reh cell line revealed that IGF2BP1 targets encompass multiple pro-oncogenic signalling pathways including TNFα/NFκB and PI3K-Akt pathways. These pathways were also dysregulated in primary ETV6::RUNX1 positive B-ALL patient samples from our center as well as in public B-ALL patient datasets. IGF2BP1 showed binding and stabilization of the ETV6::RUNX1 fusion transcript itself. This positive feedback loop led to constitutive dysregulation of several oncogenic pathways. Enforced co-expression of ETV6::RUNX1 and IGF2BP1 in mouse bone marrow resulted in marrow hypercellularity which was characterized by multi-lineage progenitor expansion and strong Ki67 positivity. This pre-leukemic phenotype confirmed their synergism in-vivo. Clonal expansion of cells overexpressing both ETV6::RUNX1 and IGF2BP1 was clearly observed. These mice also developed splenomegaly indicating extramedullary hematopoiesis. CONCLUSION: Our data suggest a combined impact of the ETV6::RUNX1 fusion protein and RNA binding protein, IGF2BP1 in activating multiple oncogenic pathways in B-ALL which makes IGF2BP1 and these pathways as attractive therapeutic targets and biomarkers.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Animais , Camundongos , Subunidade alfa 2 de Fator de Ligação ao Core , Camundongos Knockout , Fosfatidilinositol 3-Quinases , Variante 6 da Proteína do Fator de Translocação ETS
3.
Sci Rep ; 13(1): 7490, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37160922

RESUMO

Loss of function in the tumor suppressor gene TP53 is the most common alteration seen in human cancer. In mice, P53 deletion in all cells leads predominantly to the development of T-cell lymphomas, followed by B-cell lymphomas, sarcomas and teratomas. In order to dissect the role of P53 in the hematopoietic system, we generated and analyzed two different mouse models deficient for P53. A pan-hematopoietic P53 deletion mouse was created using Vav1-Cre based deletion; and a B-cell-specific deletion mouse was created using a CD19-Cre based deletion. The Vav1-P53CKO mice predominantly developed T-cell malignancies in younger mice, and myeloid malignancies in older mice. In T-cell malignancies, there was accelerated thymic cell maturation with overexpression of Notch1 and its downstream effectors. CD19-P53CKO mice developed marginal zone expansion in the spleen, followed by marginal zone lymphoma, some of which progressed to diffuse large B-cell lymphomas. Interestingly, marginal zone and diffuse large B-cell lymphomas had a unique gene expression signature characterized by activation of the PI3K pathway, compared with wild type marginal zone or follicular cells of the spleen. This study demonstrates lineage specific P53 deletion leading to distinct phenotypes secondary to unique gene expression programs set in motion.


Assuntos
Sistema Hematopoético , Linfoma Difuso de Grandes Células B , Humanos , Animais , Camundongos , Fosfatidilinositol 3-Quinases , Proteína Supressora de Tumor p53/genética , Baço , Proteínas Adaptadoras de Transdução de Sinal , Antígenos CD19
4.
Exp Hematol Oncol ; 11(1): 80, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36307883

RESUMO

RNA binding proteins (RBPs) have recently emerged as important post-transcriptional gene expression regulators in both normal development and disease. RBPs influence the fate of mRNAs through multiple mechanisms of action such as RNA modifications, alternative splicing, and miR-mediated regulation. This complex and, often, combinatorial regulation by RBPs critically impacts the expression of oncogenic transcripts and, thus, the activation of pathways that drive oncogenesis. Here, we focus on the major features of RBPs, their mechanisms of action, and discuss the current progress in investigating the function of important RBPs in MLL-rearranged leukemia.

5.
Front Immunol ; 13: 984302, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36172375

RESUMO

The microRNA, miR-146a, is a negative feedback regulator of the central immune transcription factor, nuclear factor kappa B (NFkB). MiR-146a plays important roles in the immune system, and miR-146a deficient mice show a complex phenotype with features of chronic inflammation and autoimmune disease. In this study, we examined the role of miR-146a in extrafollicular B-cell responses, finding that miR-146a suppresses cellular responses in vivo and in vitro. Gene expression profiling revealed that miR-146a-deficient B-cells showed upregulation of interferon pathway genes, including Traf6, a known miR-146a target. We next interrogated the role of TRAF6 in these B-cell responses, finding that TRAF6 is required for proliferation by genetic and pharmacologic inhibition. Together, our findings demonstrate a novel role for miR-146a and TRAF6 in the extrafollicular B-cell responses, which have recently been tied to autoimmune disease pathogenesis. Our work highlights the pathogenetic role of miR-146a and the potential of pharmacologic inhibition of TRAF6 in autoimmune diseases in which miR-146a is deregulated.


Assuntos
Doenças Autoimunes , Linfócitos B , MicroRNAs , Fator 6 Associado a Receptor de TNF , Animais , Linfócitos B/imunologia , Interferons/metabolismo , Camundongos , MicroRNAs/genética , NF-kappa B/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo
6.
Leukemia ; 36(1): 68-79, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34321607

RESUMO

Despite recent advances in therapeutic approaches, patients with MLL-rearranged leukemia still have poor outcomes. Here, we find that the RNA-binding protein IGF2BP3, which is overexpressed in MLL-translocated leukemia, strongly amplifies MLL-Af4-mediated leukemogenesis. Deletion of Igf2bp3 significantly increases the survival of mice with MLL-Af4-driven leukemia and greatly attenuates disease, with a minimal impact on baseline hematopoiesis. At the cellular level, MLL-Af4 leukemia-initiating cells require Igf2bp3 for their function in leukemogenesis. At the molecular level, IGF2BP3 regulates a complex posttranscriptional operon governing leukemia cell survival and proliferation. IGF2BP3-targeted mRNA transcripts include important MLL-Af4-induced genes, such as those in the Hoxa locus, and the Ras signaling pathway. Targeting of transcripts by IGF2BP3 regulates both steady-state mRNA levels and, unexpectedly, pre-mRNA splicing. Together, our findings show that IGF2BP3 represents an attractive therapeutic target in this disease, providing important insights into mechanisms of posttranscriptional regulation in leukemia.


Assuntos
Carcinogênese/patologia , Proteínas de Ligação a DNA/genética , Regulação Leucêmica da Expressão Gênica , Histona-Lisina N-Metiltransferase/genética , Leucemia Experimental/patologia , Proteína de Leucina Linfoide-Mieloide/genética , Proteínas Nucleares/genética , Proteínas de Fusão Oncogênica/genética , Proteínas de Ligação a RNA/fisiologia , Animais , Apoptose , Carcinogênese/genética , Carcinogênese/metabolismo , Proliferação de Células , Feminino , Leucemia Experimental/etiologia , Leucemia Experimental/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
7.
Sci Rep ; 11(1): 13158, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34162911

RESUMO

Post-transcriptional gene regulation, including that by RNA binding proteins (RBPs), has recently been described as an important mechanism in cancer. We had previously identified a set of RBPs that were highly dysregulated in B-cell acute lymphoblastic leukemia (B-ALL) with MLL translocations, which carry a poor prognosis. Here, we sought to functionally characterize these dysregulated RBP genes by performing a focused CRISPR dropout screen in B-ALL cell lines, finding dependencies on several genes including EIF3E, EPRS and USO1. Validating our findings, CRISPR/Cas9-mediated disruption of USO1 in MLL-translocated B-ALL cells reduced cell growth, promoted cell death, and altered the cell cycle. Transcriptomic analysis of USO1-deficient cells revealed alterations in pathways related to mTOR signaling, RNA metabolism, and targets of MYC. In addition, USO1-regulated genes from these experimental samples were significantly and concordantly correlated with USO1 expression in primary samples collected from B-ALL patients. Lastly, we found that loss of Uso1 inhibited colony formation of MLL-transformed in primary bone marrow cells from Cas9-EGFP mice. Together, our findings demonstrate an approach to performing focused sub-genomic CRISPR screens and highlight a putative RBP vulnerability in MLL-translocated B-ALL, thus identifying potential therapeutic targets in this disease.


Assuntos
Sistemas CRISPR-Cas , Proteínas da Matriz do Complexo de Golgi/fisiologia , Proteína de Leucina Linfoide-Mieloide/fisiologia , Proteínas de Neoplasias/fisiologia , Proteínas de Fusão Oncogênica/fisiologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteínas de Transporte Vesicular/fisiologia , Animais , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Regulação Leucêmica da Expressão Gênica , Genes Reporter , Predisposição Genética para Doença , Testes Genéticos , Proteínas da Matriz do Complexo de Golgi/genética , Homeostase , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteína de Leucina Linfoide-Mieloide/genética , Proteínas de Neoplasias/genética , Proteínas de Fusão Oncogênica/genética , Processamento Pós-Transcricional do RNA , RNA Neoplásico/genética , RNA Neoplásico/metabolismo , Transgenes , Translocação Genética , Ensaio Tumoral de Célula-Tronco , Proteínas de Transporte Vesicular/genética
8.
Neurosci Lett ; 759: 136048, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34126178

RESUMO

Chromosome 4q21 microdeletion leads to a human syndrome that exhibits restricted growth, facial dysmorphisms, mental retardation, and absent or delayed speech. One of the key genes in the affected region of the chromosome is PRKG2, which encodes cGMP-dependent protein kinase II (cGKII). Mice lacking cGKII exhibit restricted growth and deficits in learning and memory, as seen in the human syndrome. However, vocalization impairments in these mice have not been determined. The molecular pathway underlying vocalization impairment in humans is not fully understood. Here, we employed cGKII knockout (KO) mice as a model for the human microdeletion syndrome to test whether vocalizations are affected by loss of the PRKG2 gene. Mice emit ultrasonic vocalizations (USVs) to communicate in social situations, stress, and isolation. We thus recorded ultrasonic vocalizations as a model for human speech. We isolated postnatal day 5-7 pups from the nest to record and analyze USVs and found significant differences in vocalizations of KO mice relative to wild-type and heterozygous mutant mice. KO mice produced fewer calls that were shorter duration and higher frequency. Because neuronal activation in the arcuate nucleus in the hypothalamus is important for the production of animal USVs following isolation from the nest, we assessed neuronal activity in the arcuate nucleus of KO pups following isolation. We found significant reduction of neuronal activation in cGKII KO pups after isolation. Taken together, our studies indicate that cGKII is important for neuronal activation in the arcuate nucleus, which significantly contributes to the production of USVs in neonatal mice. We further suggest cGKII KO mice can be a valuable animal model to investigate pathophysiology of human microdeletion 4q21 syndrome.


Assuntos
Deleção Cromossômica , Transtornos Cromossômicos , Proteína Quinase Dependente de GMP Cíclico Tipo II/deficiência , Modelos Animais de Doenças , Distúrbios da Fala/enzimologia , Distúrbios da Fala/genética , Animais , Núcleo Arqueado do Hipotálamo/enzimologia , Transtornos Cromossômicos/complicações , Transtornos Cromossômicos/enzimologia , Transtornos Cromossômicos/genética , Cromossomos Humanos Par 4/enzimologia , Cromossomos Humanos Par 4/genética , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Vocalização Animal/fisiologia
9.
Mol Cancer ; 16(1): 126, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28724437

RESUMO

BACKGROUND: Long non-coding RNAs (lncRNAs) play a variety of cellular roles, including regulation of transcription and translation, leading to alterations in gene expression. Some lncRNAs modulate the expression of chromosomally adjacent genes. Here, we assess the roles of the lncRNA CASC15 in regulation of a chromosomally nearby gene, SOX4, and its function in RUNX1/AML translocated leukemia. RESULTS: CASC15 is a conserved lncRNA that was upregulated in pediatric B-acute lymphoblastic leukemia (B-ALL) with t (12; 21) as well as pediatric acute myeloid leukemia (AML) with t (8; 21), both of which are associated with relatively better prognosis. Enforced expression of CASC15 led to a myeloid bias in development, and overall, decreased engraftment and colony formation. At the cellular level, CASC15 regulated cellular survival, proliferation, and the expression of its chromosomally adjacent gene, SOX4. Differentially regulated genes following CASC15 knockdown were enriched for predicted transcriptional targets of the Yin and Yang-1 (YY1) transcription factor. Interestingly, we found that CASC15 enhances YY1-mediated regulation of the SOX4 promoter. CONCLUSIONS: Our findings represent the first characterization of this CASC15 in RUNX1-translocated leukemia, and point towards a mechanistic basis for its action.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/genética , Leucemia Mieloide Aguda/genética , RNA Longo não Codificante/genética , Fatores de Transcrição SOXC/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Criança , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Camundongos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Prognóstico , Regiões Promotoras Genéticas/genética , Translocação Genética/genética , Fator de Transcrição YY1/genética
10.
J Clin Invest ; 126(4): 1495-511, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26974154

RESUMO

Posttranscriptional control of gene expression is important for defining both normal and pathological cellular phenotypes. In vitro, RNA-binding proteins (RBPs) have recently been shown to play important roles in posttranscriptional regulation; however, the contribution of RBPs to cell specification is not well understood. Here, we determined that the RBP insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) is specifically overexpressed in mixed lineage leukemia-rearranged (MLL-rearranged) B-acute lymphoblastic leukemia (B-ALL), which constitutes a subtype of this malignancy associated with poor prognosis and high risk of relapse. IGF2BP3 was required for the survival of B-ALL cell lines, as knockdown led to decreased proliferation and increased apoptosis. Enforced expression of IGF2BP3 provided murine BM cells with a strong survival advantage, led to proliferation of hematopoietic stem and progenitor cells, and skewed hematopoietic development to the B cell/myeloid lineage. Cross-link immunoprecipitation and high throughput sequencing uncovered the IGF2BP3-regulated transcriptome, which includes oncogenes MYC and CDK6 as direct targets. IGF2BP3 regulated transcripts via targeting elements within 3' untranslated regions (3'UTR), and enforced IGF2BP3 expression in mice resulted in enhanced expression of Myc and Cdk6 in BM. Together, our data suggest that IGF2BP3-mediated targeting of oncogenic transcripts may represent a critical pathogenetic mechanism in MLL-rearranged B-ALL and support IGF2BP3 and its cognate RNA-binding partners as potential therapeutic targets in this disease.


Assuntos
Proliferação de Células , Regulação Leucêmica da Expressão Gênica , Células-Tronco Hematopoéticas/metabolismo , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , RNA Neoplásico/metabolismo , Proteínas de Ligação a RNA/metabolismo , Regiões 3' não Traduzidas , Animais , Linfócitos B/metabolismo , Linfócitos B/patologia , Linhagem Celular Tumoral , Quinase 6 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/metabolismo , Feminino , Células-Tronco Hematopoéticas/patologia , Humanos , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Masculino , Camundongos , Células Mieloides/metabolismo , Células Mieloides/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Neoplásico/genética , Proteínas de Ligação a RNA/genética
11.
Mol Cancer ; 14: 214, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26694754

RESUMO

BACKGROUND: A new class of non-coding RNAs, known as long non-coding RNAs (lncRNAs), has been recently described. These lncRNAs are implicated to play pivotal roles in various molecular processes, including development and oncogenesis. Gene expression profiling of human B-ALL samples showed differential lncRNA expression in samples with particular cytogenetic abnormalities. One of the most promising lncRNAs identified, designated B-ALL associated long RNA-6 (BALR-6), had the highest expression in patient samples carrying the MLL rearrangement, and is the focus of this study. RESULTS: Here, we performed a series of experiments to define the function of BALR-6, including several novel splice forms that we identified. Functionally, siRNA-mediated knockdown of BALR-6 in human B-ALL cell lines caused reduced cell proliferation and increased cell death. Conversely, overexpression of BALR-6 isoforms in both human and mouse cell lines caused increased proliferation and decreased apoptosis. Overexpression of BALR-6 in murine bone marrow transplantation experiments caused a significant increase in early hematopoietic progenitor populations, suggesting that its dysregulation may cause developmental changes. Notably, the knockdown of BALR-6 resulted in global dysregulation of gene expression. The gene set was enriched for leukemia-associated genes, as well as for the transcriptome regulated by Specificity Protein 1 (SP1). We confirmed changes in the expression of SP1, as well as its known interactor and downstream target CREB1. Luciferase reporter assays demonstrated an enhancement of SP1-mediated transcription in the presence of BALR-6. These data provide a putative mechanism for regulation by BALR-6 in B-ALL. CONCLUSIONS: Our findings support a role for the novel lncRNA BALR-6 in promoting cell survival in B-ALL. Furthermore, this lncRNA influences gene expression in B-ALL in a manner consistent with a function in transcriptional regulation. Specifically, our findings suggest that BALR-6 expression regulates the transcriptome downstream of SP1, and that this may underlie the function of BALR-6 in B-ALL.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , RNA Longo não Codificante/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Técnicas de Silenciamento de Genes , Células-Tronco Hematopoéticas/fisiologia , Humanos , Camundongos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , RNA Longo não Codificante/metabolismo , Fator de Transcrição Sp1/fisiologia , Transcriptoma
12.
Oncotarget ; 6(13): 11023-37, 2015 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-25906746

RESUMO

miR-146a is a NF-κB induced microRNA that serves as a feedback regulator of this critical pathway. In mice, deficiency of miR-146a results in hematolymphoid cancer at advanced ages as a consequence of constitutive NF-κB activity. In this study, we queried whether the deficiency of miR-146a contributes to B-cell oncogenesis. Combining miR-146a deficiency with transgenic expression of c-Myc led to the development of highly aggressive B-cell malignancies. Mice transgenic for c-Myc and deficient for miR-146a were characterized by significantly shortened survival, increased lymph node involvement, differential involvement of the spleen and a mature B-cell phenotype. High-throughput sequencing of the tumors revealed significant dysregulation of approximately 250 genes. Amongst these, the transcription factor Egr1 was consistently upregulated in mice deficient for miR-146a. Interestingly, transcriptional targets of Egr1 were enriched in both the high-throughput dataset and in a larger set of miR-146a-deficient tumors. miR-146a overexpression led to downregulation of Egr1 and downstream targets with concomitant decrease in cell growth. Direct targeting of the human EGR1 by miR-146a was seen by luciferase assay. Together our findings illuminate a bona fide role for miR-146a in the modulation of B-cell oncogenesis and reveal the importance of understanding microRNA function in a cell- and disease-specific context.


Assuntos
Linfócitos B/patologia , Transformação Celular Neoplásica/patologia , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Regulação Neoplásica da Expressão Gênica , Linfoma de Células B/etiologia , MicroRNAs/fisiologia , Proteínas Proto-Oncogênicas c-myc/fisiologia , Animais , Apoptose , Linfócitos B/metabolismo , Biomarcadores Tumorais , Western Blotting , Proliferação de Células , Transformação Celular Neoplásica/genética , Células Cultivadas , Proteína 1 de Resposta de Crescimento Precoce/genética , Citometria de Fluxo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Linfoma de Células B/metabolismo , Linfoma de Células B/patologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , NF-kappa B/genética , NF-kappa B/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA