Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Virus Res ; 329: 199106, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36990396

RESUMO

Rice yellow mottle virus (RYMV) has persisted as a major biotic constraint to rice production in Africa. However, no data on RYMV epidemics were available in Ghana, although it is an intensive rice-producing country. Surveys were performed from 2010 to 2020 in eleven rice-growing regions of Ghana. Symptom observations and serological detections confirmed that RYMV is circulating in most of these regions. Coat protein gene and complete genome sequencings revealed that RYMV in Ghana almost exclusively belongs to the strain S2, one of the strains covering the largest area in West Africa. We also detected the presence of the S1ca strain which is being reported for the first time outside its area of origin. These results suggested a complex epidemiological history of RYMV in Ghana and a recent expansion of S1ca to West Africa. Phylogeographic analyses reconstructed at least five independent RYMV introductions in Ghana for the last 40 years, probably due to rice cultivation intensification in West Africa leading to a better circulation of RYMV. In addition to identifying some routes of RYMV dispersion in Ghana, this study contributes to the epidemiological surveillance of RYMV and helps to design disease management strategies, especially through breeding for rice disease resistance.


Assuntos
Oryza , Vírus de Plantas , Gana/epidemiologia , Melhoramento Vegetal , Vírus de Plantas/genética , Variação Genética
2.
Heliyon ; 6(11): e05551, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33294693

RESUMO

Rice yellow mottle virus (RYMV) is the most damaging viral disease of rice in Africa and can cause yield losses of up to 100%. The objective of this study was to characterize newly introduced rice lines from Korea into Ghana for their reaction to RYMV infection. One hundred and seventy-two rice lines from Korea were screened for their level of resistance RYMV in a screen house at Fumesua, Ghana. Four checks consisting of two highly resistant lines (Tog7291 and Gigante with rymv1-2 (resistant gene1-allele2) and rymv2 (resistant gene2) respectively), a moderately resistant line (CRI-Amankwatia) and a susceptible cultivar Jasmine 85 were used. The experiment was carried out in a 4 x 44 lattice design with four replicates. Screening for RYMV resistance was conducted by visual symptom scoring and virus-assessment through serology using enzyme linked immunosorbent assay (ELISA) test. Disease incidence and severity were assessed from 2 to 42 dpi. Data for disease severity and incidence were transformed (Log x+1) for ANOVA. Five lines (8261112, 8261119, 8261133, 8261588, and 8261634) were identified to be highly resistant to the disease just like Tog7291 and Gigante. The study also revealed 24 lines that were resistant but not grouping with Tog7291 and Gigante, whereas 100 moderately resistant lines clustered with the moderately resistance check CRI-Amankwatia in a distinct group. Forty-three (43) susceptible lines were identified with the susceptible check Jasmine 85 falling in this group. No highly susceptible line was identified. The newly idenfied resistant genotypes can be used by breeders to develop RYMV resistant varieties.

3.
Virol J ; 15(1): 6, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29310664

RESUMO

BACKGROUND: Rice yellow mottle virus (RYMV) of the genus Sobemovirus is the most important viral pathogen of rice causing more damage to rice crop in Sub Saharan Africa. The aim of this study was to conduct pathogenic characterization of RYMV isolates from the Central African Republic (CAR) and to screen commonly cultivated rice accessions in the country for resistance/tolerance to the virus. METHODS: The pathogenicity of RYMV isolates was studied by mechanical inoculation with comparison to differential rice lines highly resistant to RYMV available at the Institute of Environment and Agricultural Research (INERA) in Burkina Faso. To screen commonly cultivated rice accessions in CAR, characterized RYMV isolates from the country were used as inoculum sources. Resistant breaking (RB) isolates were used to prepare RB-inoculum, whereas non-resistant breaking isolates (nRB) were used for nRB-inoculum. RESULTS: Overall 102 isolates used in this study, 29.4% were able to overcome the high resistance genes in the rice cultivars Gigante and Tog7291. All isolates were distributed within three distinct pathogenic profiles. The first profile constituted of 6.9% of the isolates was able to break down the resistance in rice cultivar Gigante only. The second pathogenic profile made of 19.6% of isolates was able to infect Tog7291 only. The third profile, 2.9% of isolates overcame simultaneously resistance genes in both rice cultivars Gigante and Tog7291. Out of isolates able to break down the resistance gene in cultivar Gigante, a single isolate was found to be non-infectious to the susceptible control IR64. Data from screening showed that all accessions were susceptible to RYMV, although IRAT213 was found to be partially resistant to both nRB-inoculum and RB-inoculum. CONCLUSION: The present study can be considered as the first in the Central African Republic, it gives a caution on the high risk of RYMV damage to rice production in the country. Beside, skills of pathogenic profiles of RYMV isolates will contribute to better disease management.


Assuntos
Oryza/virologia , Doenças das Plantas/virologia , Vírus de Plantas/fisiologia , Evolução Biológica , República Centro-Africana , Resistência à Doença , Interações Hospedeiro-Patógeno , Fenótipo , Virulência
4.
Arch Virol ; 153(10): 1813-20, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18777157

RESUMO

A new virus was isolated from both the grass Imperata cylindrica and maize plants that had yellow mottle symptoms in Burkina Faso, West Africa. The virus has isometric particles ca. 32 nm in diameter. The experimental host range was restricted to Rottboellia exaltata. Virions were isolated from leaves of systemically infected maize plants. Koch's postulates were completed by mechanically inoculating uninfected Imperata or maize with either purified virus or sap from infected Imperata plants. Virion preparations were used to produce a specific polyclonal antiserum, and an enzyme-linked immunosorbent assay test was set up. The full genome of the virus was sequenced, and it comprised 4,547 nucleotides. Phylogenetic studies indicated that the virus is closely related to rice yellow mottle virus, a sobemovirus that infects monocotyledons in Africa, and is more distantly related to cocksfoot mottle virus, another sobemovirus that infects monocotyledons. Although the virus can infect R. exaltata experimentally, it differs from Rottboellia yellow mottle virus, a member of a tentative species of the genus Sobemovirus that also infects monocotyledons in Africa. Particle morphology, serological properties, genomic organization, and phylogenetic analysis are all consistent with assignment of the new virus to the genus Sobemovirus. The name Imperata yellow mottle virus is proposed.


Assuntos
Doenças das Plantas/virologia , Vírus de Plantas/classificação , Vírus de Plantas/isolamento & purificação , Poaceae/virologia , Zea mays/virologia , Burkina Faso , Ensaio de Imunoadsorção Enzimática/métodos , Ordem dos Genes , Genoma Viral , Dados de Sequência Molecular , Filogenia , Folhas de Planta/virologia , Vírus de Plantas/genética , Vírus de Plantas/ultraestrutura , Análise de Sequência de DNA , Homologia de Sequência , Vírion/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA